Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 133 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 34 tok/s Pro
GPT-4o 61 tok/s Pro
Kimi K2 194 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4.5 39 tok/s Pro
2000 character limit reached

Orthogonal Spin Current Injected Magnetic Tunnel Junction for Convolutional Neural Networks (2207.14603v3)

Published 29 Jul 2022 in cond-mat.mes-hall and cond-mat.dis-nn

Abstract: We propose that a spin Hall effect driven magnetic tunnel junction device can be engineered to provide a continuous change in the resistance across it when injected with orthogonal spin currents. Using this concept, we develop a hybrid device-circuit simulation platform to design a network that realizes multiple functionalities of a convolutional neural network. At the atomistic level, we use the Keldysh non-equilibrium Green's function technique that is coupled self-consistently with the stochastic Landau-Lifshitz-Gilbert-Slonczewski equations, which in turn is coupled with the HSPICE circuit simulator. We demonstrate the simultaneous functionality of the proposed network to evaluate the rectified linear unit and max-pooling functionalities. We present a detailed power and error analysis of the designed network against the thermal stability factor of the free ferromagnets. Our results show that there exists a non-trivial power-error trade-off in the proposed network, which enables an energy-efficient network design based on unstable free ferromagnets with reliable outputs. The static power for the proposed ReLU circuit is $0.56\mu W$ and whereas the energy cost of a nine-input rectified linear unit-max-pooling network with an unstable free ferromagnet($\Delta=15$) is $3.4pJ$ in the worst-case scenario. We also rationalize the magnetization stability of the proposed device by analyzing the vanishing torque gradient points.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.