Papers
Topics
Authors
Recent
Search
2000 character limit reached

Building spatial symmetries into parameterized quantum circuits for faster training

Published 28 Jul 2022 in quant-ph | (2207.14413v2)

Abstract: Practical success of quantum learning models hinges on having a suitable structure for the parameterized quantum circuit. Such structure is defined both by the types of gates employed and by the correlations of their parameters. While much research has been devoted to devising adequate gate-sets, typically respecting some symmetries of the problem, very little is known about how their parameters should be structured. In this work, we show that an ideal parameter structure naturally emerges when carefully considering spatial symmetries (i.e., the symmetries that are permutations of parts of the system under study). Namely, we consider the automorphism group of the problem Hamiltonian, leading us to develop a circuit construction that is equivariant under this symmetry group. The benefits of our novel circuit structure, called ORB, are numerically probed in several ground-state problems. We find a consistent improvement (in terms of circuit depth, number of parameters required, and gradient magnitudes) compared to literature circuit constructions.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (21)
  1. E. Farhi, J. Goldstone, and S. Gutmann, A quantum approximate optimization algorithm, arXiv preprint arXiv:1411.4028  (2014).
  2. D. Wecker, M. B. Hastings, and M. Troyer, Progress towards practical quantum variational algorithms, Physical Review A 92, 042303 (2015).
  3. W. W. Ho and T. H. Hsieh, Efficient variational simulation of non-trivial quantum states, SciPost Phys. 6, 29 (2019).
  4. T. Cohen and M. Welling, Group equivariant convolutional networks, in International conference on machine learning (PMLR, 2016) pp. 2990–2999.
  5. R. Kondor and S. Trivedi, On the generalization of equivariance and convolution in neural networks to the action of compact groups, in International Conference on Machine Learning (PMLR, 2018) pp. 2747–2755.
  6. K. Seki, T. Shirakawa, and S. Yunoki, Symmetry-adapted variational quantum eigensolver, Physical Review A 101, 052340 (2020).
  7. I. Marvian, Restrictions on realizable unitary operations imposed by symmetry and locality, Nature Physics 18, 283 (2022).
  8. C. O. Marrero, M. Kieferová, and N. Wiebe, Entanglement-induced barren plateaus, PRX Quantum 2, 040316 (2021).
  9. D. Stilck França and R. Garcia-Patron, Limitations of optimization algorithms on noisy quantum devices, Nature Physics 17, 1221 (2021).
  10. S. Sim, P. D. Johnson, and A. Aspuru-Guzik, Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms, Advanced Quantum Technologies 2, 1900070 (2019).
  11. R. Zeier and T. Schulte-Herbrüggen, Symmetry principles in quantum systems theory, Journal of mathematical physics 52, 113510 (2011).
  12. B. Zhang, A. Sone, and Q. Zhuang, Quantum computational phase transition in combinatorial problems, npj Quantum Information 8, 1 (2022).
  13. J. Preskill, Quantum computing in the NISQ era and beyond, Quantum 2, 79 (2018).
  14. K. Temme, S. Bravyi, and J. M. Gambetta, Error mitigation for short-depth quantum circuits, Physical review letters 119, 180509 (2017).
  15. E. Dagotto and A. Moreo, Phase diagram of the frustrated spin-1/2 heisenberg antiferromagnet in 2 dimensions, Physical Review Letters 63, 2148 (1989).
  16. M. Bukov, M. Schmitt, and M. Dupont, Learning the ground state of a non-stoquastic quantum Hamiltonian in a rugged neural network landscape, SciPost Physics 10, 147 (2021).
  17. D. Huerga, Variational quantum simulation of valence-bond solids, Quantum 6, 874 (2022).
  18. C.-Y. Park, Efficient ground state preparation in variational quantum eigensolver with symmetry breaking layers, arXiv preprint arXiv:2106.02509  (2021).
  19. J. Cook, S. Eidenbenz, and A. Bärtschi, The quantum alternating operator ansatz on maximum k-vertex cover, in 2020 IEEE International Conference on Quantum Computing and Engineering (QCE) (IEEE, 2020) pp. 83–92.
  20. M. Schuld, I. Sinayskiy, and F. Petruccione, An introduction to quantum machine learning, Contemporary Physics 56, 172 (2015).
  21. R. Shaydulin and S. M. Wild, Exploiting symmetry reduces the cost of training qaoa, IEEE Transactions on Quantum Engineering 2, 1 (2021).
Citations (47)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.