Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 130 tok/s
Gemini 3.0 Pro 29 tok/s Pro
Gemini 2.5 Flash 145 tok/s Pro
Kimi K2 191 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

A Variational AutoEncoder for Transformers with Nonparametric Variational Information Bottleneck (2207.13529v2)

Published 27 Jul 2022 in cs.LG and cs.CL

Abstract: We propose a VAE for Transformers by developing a variational information bottleneck regulariser for Transformer embeddings. We formalise the embedding space of Transformer encoders as mixture probability distributions, and use Bayesian nonparametrics to derive a nonparametric variational information bottleneck (NVIB) for such attention-based embeddings. The variable number of mixture components supported by nonparametric methods captures the variable number of vectors supported by attention, and the exchangeability of our nonparametric distributions captures the permutation invariance of attention. This allows NVIB to regularise the number of vectors accessible with attention, as well as the amount of information in individual vectors. By regularising the cross-attention of a Transformer encoder-decoder with NVIB, we propose a nonparametric variational autoencoder (NVAE). Initial experiments on training a NVAE on natural language text show that the induced embedding space has the desired properties of a VAE for Transformers.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.