Cluster structures on braid varieties (2207.11607v2)
Abstract: We show the existence of cluster $\mathcal{A}$-structures and cluster Poisson structures on any braid variety, for any simple Lie group. The construction is achieved via weave calculus and a tropicalization of Lusztig's coordinates. Several explicit seeds are provided and the quiver and cluster variables are readily computable. We prove that these upper cluster algebras equal their cluster algebras, show local acyclicity, and explicitly determine their DT-transformations as the twist automorphisms of braid varieties. The main result also resolves the conjecture of B. Leclerc on the existence of cluster algebra structures on the coordinate rings of open Richardson varieties.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.