Effect of Measurement Backaction on Quantum Clock Precision Studied with a Superconducting Circuit (2207.11043v3)
Abstract: We theoretically and experimentally study the precision of a quantum clock near zero temperature, explicitly accounting for the effect of continuous measurement. The clock is created by a superconducting transmon qubit dispersively coupled to an open coplanar resonator. The cavity and qubit are driven by coherent fields, and the cavity output is monitored with a quantum-noise-limited amplifier. When the continuous measurement is weak, it induces persistent coherent oscillations (with fluctuating periods) in the conditional moments of the qubit's energy probability distribution, which are manifest in the output of the resonator. On the other hand, strong continuous measurement leads to an incoherent cycle of quantum jumps. We theoretically find an equality for the precision of the clock in each regime. Independently from the equalities, we derive a kinetic uncertainty relation for the precision, and find that both equalities satisfy this uncertainty relation. Finally, we experimentally verify that our quantum clock obeys the kinetic uncertainty relation for the precision, thus making an explicit link between the (kinetic) thermodynamic behavior of the clock and its precision, and achieving an experimental test of a kinetic uncertainty relation in the quantum domain.
- H. Ball, W. D. Oliver, and M. J. Biercuk, The role of master clock stability in quantum information processing, NPJ Quantum Information 2, 10.1038/npjqi.2016.33 (2016).
- M. S. Safronova, The search for variation of fundamental constants with clocks, Ann. Phys. 531, 1800364 (2019).
- G. J. Milburn, The thermodynamics of clocks, Contemp. Phys. 61, 69 (2020).
- C. Maes, Frenetic bounds on the entropy production, Phys. Rev. Lett. 119, 160601 (2017).
- I. D. Terlizzi and M. Baiesi, Kinetic uncertainty relation, Journal of Physics A: Mathematical and Theoretical 52, 02LT03 (2018).
- M. T. Mitchison, Quantum thermal absorption machines: refrigerators, engines and clocks, Contemporary Physics 60, 164 (2019), https://doi.org/10.1080/00107514.2019.1631555 .
- D. Ziemkiewicz, Entropy of timekeeping in a mechanical clock, Phys. Rev. E 105, 055001 (2022).
- M. P. Woods, Autonomous ticking clocks from axiomatic principles, Quantum 5, 381 (2021).
- H. M. Wiseman, Stochastic quantum dynamics of a continuously monitored laser, Phys. Rev. A 47, 5180 (1993).
- H.-S. Goan and G. J. Milburn, Dynamics of a mesoscopic charge quantum bit under continuous quantum measurement, Phys. Rev. B 64, 235307 (2001).
- A. N. Korotkov and D. V. Averin, Continuous weak measurement of quantum coherent oscillations, Phys. Rev. B 64, 165310 (2001).
- R. Vijay, D. H. Slichter, and I. Siddiqi, Observation of quantum jumps in a superconducting artificial atom, Phys. Rev. Lett. 106, 110502 (2011).
- A. C. Barato and U. Seifert, Thermodynamic uncertainty relation for biomolecular processes, Phys. Rev. Lett. 114, 158101 (2015).
- J. M. Horowitz and T. R. Gingrich, Proof of the finite-time thermodynamic uncertainty relation for steady-state currents, Phys. Rev. E 96, 020103 (2017).
- A. Dechant and S. Sasa, Current fluctuations and transport efficiency for general langevin systems, J. of Stat. Mech.: Theory Exp. 2018, 063209 (2018).
- K. Liu, Z. Gong, and M. Ueda, Thermodynamic uncertainty relation for arbitrary initial states, Phys. Rev. Lett. 125, 140602 (2020).
- N. Shiraishi, K. Saito, and H. Tasaki, Universal trade-off relation between power and efficiency for heat engines, Phys. Rev. Lett. 117, 190601 (2016).
- T. Van Vu, V. T. Vo, and Y. Hasegawa, Entropy production estimation with optimal current, Phys. Rev. E 101, 042138 (2020).
- S. K. Manikandan, D. Gupta, and S. Krishnamurthy, Inferring entropy production from short experiments, Phys. Rev. Lett. 124, 120603 (2020).
- K. Brandner, T. Hanazato, and K. Saito, Thermodynamic bounds on precision in ballistic multiterminal transport, Phys. Rev. Lett. 120, 090601 (2018).
- B. K. Agarwalla and D. Segal, Assessing the validity of the thermodynamic uncertainty relation in quantum systems, Phys. Rev. B 98, 155438 (2018).
- K. Ptaszyński, Coherence-enhanced constancy of a quantum thermoelectric generator, Phys. Rev. B 98, 085425 (2018).
- T. Van Vu and Y. Hasegawa, Uncertainty relations for underdamped langevin dynamics, Phys. Rev. E 100, 032130 (2019).
- J. Liu and D. Segal, Thermodynamic uncertainty relation in quantum thermoelectric junctions, Phys. Rev. E 99, 062141 (2019).
- Y. Hasegawa and T. Van Vu, Uncertainty relations in stochastic processes: An information inequality approach, Phys. Rev. E 99, 062126 (2019).
- J. M. Horowitz and T. R. Gingrich, Thermodynamic uncertainty relations constrain non-equilibrium fluctuations, Nat. Phys. 16, 15 (2020).
- T. Van Vu and Y. Hasegawa, Thermodynamic uncertainty relations under arbitrary control protocols, Phys. Rev. Res. 2, 013060 (2020).
- T. Koyuk and U. Seifert, Thermodynamic uncertainty relation for time-dependent driving, Phys. Rev. Lett. 125, 260604 (2020).
- P. P. Potts and P. Samuelsson, Thermodynamic uncertainty relations including measurement and feedback, Phys. Rev. E 100, 052137 (2019).
- V. T. Vo, T. Van Vu, and Y. Hasegawa, Unified approach to classical speed limit and thermodynamic uncertainty relation, Phys. Rev. E 102, 062132 (2020).
- G. Falasco, M. Esposito, and J.-C. Delvenne, Unifying thermodynamic uncertainty relations, New J. of Phys. 22, 053046 (2020).
- G. Falasco and M. Esposito, Dissipation-time uncertainty relation, Phys. Rev. Lett. 125, 120604 (2020).
- A. A. S. Kalaee, A. Wacker, and P. P. Potts, Violating the thermodynamic uncertainty relation in the three-level maser, Phys. Rev. E 104, L012103 (2021).
- M. F. Sacchi, Thermodynamic uncertainty relations for bosonic otto engines, Phys. Rev. E 103, 012111 (2021).
- J.-M. Park and H. Park, Thermodynamic uncertainty relation in the overdamped limit with a magnetic lorentz force, Phys. Rev. Res. 3, 043005 (2021).
- S. Lee, M. Ha, and H. Jeong, Quantumness and thermodynamic uncertainty relation of the finite-time otto cycle, Phys. Rev. E 103, 022136 (2021).
- A. Dechant and S. Sasa, Continuous time reversal and equality in the thermodynamic uncertainty relation, Phys. Rev. Res. 3, L042012 (2021).
- A. M. Timpanaro, G. Guarnieri, and G. T. Landi, The most precise quantum thermoelectric, arXiv preprint arXiv:2106.10205 (2021).
- M. J. Kewming and S. Shrapnel, Entropy production and fluctuation theorems in a continuously monitored optical cavity at zero temperature, Quantum 6, 685 (2022).
- T. R. Gingrich and J. M. Horowitz, Fundamental bounds on first passage time fluctuations for currents, Phys. Rev. Lett. 119, 170601 (2017).
- T. Van Vu and K. Saito, Thermodynamics of precision in Markovian open quantum dynamics, Phys. Rev. Lett. 128, 140602 (2022).
- J. P. Garrahan, Simple bounds on fluctuations and uncertainty relations for first-passage times of counting observables, Phys. Rev. E 95, 032134 (2017).
- I. Di Terlizzi and M. Baiesi, Kinetic uncertainty relation, Journal of Physics A: Mathematical and Theoretical 52, 02LT03 (2018).
- J. R. Johansson, P. D. Nation, and F. Nori, QuTiP: An open-source Python framework for the dynamics of open quantum systems, Comput. Phys. Commun. 183, 1760 (2012).
- J. R. Johansson, P. D. Nation, and F. Nori, QuTiP 2: A Python framework for the dynamics of open quantum systems, Comput. Phys. Commun. 184, 1234 (2013).
- Z. Aminzare, P. Holmes, and V. Srivastava, On phase reduction and time period of noisy oscillators, in 2019 IEEE 58th Conference on Decision and Control (CDC) (2019) pp. 4717–4722.
- Y. Hasegawa, Quantum thermodynamic uncertainty relation for continuous measurement, Phys. Rev. Lett. 125, 050601 (2020).
- S. Gammelmark and K. Mølmer, Fisher information and the quantum Cramér-Rao sensitivity limit of continuous measurements, Phys. Rev. Lett. 112, 10.1103/physrevlett.112.170401 (2014).
- Ref. [5] actually reported saturation of the accuracy with increasing fundamental heat dissipation of the drive instead of increasing drive strength, but the latter is a monotonically increasing function of the former.
- S. K. Manikandan, Autonomous quantum clocks using athermal resources, arXiv preprint arXiv:2207.07909 (2022).
- G. J. Milburn and T. J. Milburn, A quantum optomechanical Mach clock (2017), arXiv:1708.02369.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.