Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 172 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 42 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 210 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Understanding High Dimensional Spaces through Visual Means Employing Multidimensional Projections (2207.10800v1)

Published 12 Jul 2022 in cs.HC and cs.LG

Abstract: Data visualisation helps understanding data represented by multiple variables, also called features, stored in a large matrix where individuals are stored in lines and variable values in columns. These data structures are frequently called multidimensional spaces.In this paper, we illustrate ways of employing the visual results of multidimensional projection algorithms to understand and fine-tune the parameters of their mathematical framework. Some of the common mathematical common to these approaches are Laplacian matrices, Euclidian distance, Cosine distance, and statistical methods such as Kullback-Leibler divergence, employed to fit probability distributions and reduce dimensions. Two of the relevant algorithms in the data visualisation field are t-distributed stochastic neighbourhood embedding (t-SNE) and Least-Square Projection (LSP). These algorithms can be used to understand several ranges of mathematical functions including their impact on datasets. In this article, mathematical parameters of underlying techniques such as Principal Component Analysis (PCA) behind t-SNE and mesh reconstruction methods behind LSP are adjusted to reflect the properties afforded by the mathematical formulation. The results, supported by illustrative methods of the processes of LSP and t-SNE, are meant to inspire students in understanding the mathematics behind such methods, in order to apply them in effective data analysis tasks in multiple applications.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.