Papers
Topics
Authors
Recent
2000 character limit reached

Clustering constrained on linear networks (2207.10566v1)

Published 19 Jul 2022 in stat.ME, math.ST, and stat.TH

Abstract: An unsupervised classification method for point events occurring on a network of lines is proposed. The idea relies on the distributional flexibility and practicality of random partition models to discover the clustering structure featuring observations from a particular phenomenon taking place on a given set of edges. By incorporating the spatial effect in the random partition distribution, induced by a Dirichlet process, one is able to control the distance between edges and events, thus leading to an appealing clustering method. A Gibbs sampler algorithm is proposed and evaluated with a sensitivity analysis. The proposal is motivated and illustrated by the analysis of crime and violence patterns in Mexico City.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.