Papers
Topics
Authors
Recent
2000 character limit reached

On the reducing projective dimension of the residue field (2207.09241v1)

Published 19 Jul 2022 in math.AC

Abstract: In this paper we are concerned with certain invariants of modules, called reducing invariants, which have been recently introduced and studied by Araya-Celikbas and Araya-Takahashi. We raise the question whether the residue field of each commutative Noetherian local ring has finite reducing projective dimension and obtain an affirmative answer for the question for a large class of local rings. Furthermore, we construct new examples of modules of infinite projective dimension that have finite reducing projective dimension, and study several fundamental properties of reducing dimensions, especially properties under local homomorphisms of local rings.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.