Papers
Topics
Authors
Recent
Search
2000 character limit reached

A single cut proximal bundle method for stochastic convex composite optimization

Published 19 Jul 2022 in math.OC | (2207.09024v4)

Abstract: This paper considers optimization problems where the objective is the sum of a function given by an expectation and a closed convex composite function, and proposes stochastic composite proximal bundle (SCPB) methods for solving it. Complexity guarantees are established for them without requiring knowledge of parameters associated with the problem instance. Moreover, it is shown that they have optimal complexity when these problem parameters are known. To the best of our knowledge, this is the first proximal bundle method for stochastic programming able to deal with continuous distributions. Finally, we present computational results showing that SCPB substantially outperforms the robust stochastic approximation (RSA) method in all instances considered.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.