2000 character limit reached
Bias correction and uniform inference for the quantile density function (2207.09004v1)
Published 19 Jul 2022 in econ.EM
Abstract: For the kernel estimator of the quantile density function (the derivative of the quantile function), I show how to perform the boundary bias correction, establish the rate of strong uniform consistency of the bias-corrected estimator, and construct the confidence bands that are asymptotically exact uniformly over the entire domain $[0,1]$. The proposed procedures rely on the pivotality of the studentized bias-corrected estimator and known anti-concentration properties of the Gaussian approximation for its supremum.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.