Papers
Topics
Authors
Recent
2000 character limit reached

Recursive McCormick Linearization of Multilinear Programs (2207.08955v1)

Published 18 Jul 2022 in math.OC and cs.DS

Abstract: Linear programming (LP) relaxations are widely employed in exact solution methods for multilinear programs (MLP). One example is the family of Recursive McCormick Linearization (RML) strategies, where bilinear products are substituted for artificial variables, which deliver a relaxation of the original problem when introduced together with concave and convex envelopes. In this article, we introduce the first systematic approach for identifying RMLs, in which we focus on the identification of linear relaxation with a small number of artificial variables and with strong LP bounds. We present a novel mechanism for representing all the possible RMLs, which we use to design an exact mixed-integer programming (MIP) formulation for the identification of minimum-size RMLs; we show that this problem is NP-hard in general, whereas a special case is fixed-parameter tractable. Moreover, we explore structural properties of our formulation to derive an exact MIP model that identifies RMLs of a given size with the best possible relaxation bound is optimal. Our numerical results on a collection of benchmarks indicate that our algorithms outperform the RML strategy implemented in state-of-the-art global optimization solvers.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.