Papers
Topics
Authors
Recent
2000 character limit reached

Uniform Stability for First-Order Empirical Risk Minimization (2207.08257v1)

Published 17 Jul 2022 in cs.LG, math.OC, and stat.ML

Abstract: We consider the problem of designing uniformly stable first-order optimization algorithms for empirical risk minimization. Uniform stability is often used to obtain generalization error bounds for optimization algorithms, and we are interested in a general approach to achieve it. For Euclidean geometry, we suggest a black-box conversion which given a smooth optimization algorithm, produces a uniformly stable version of the algorithm while maintaining its convergence rate up to logarithmic factors. Using this reduction we obtain a (nearly) optimal algorithm for smooth optimization with convergence rate $\widetilde{O}(1/T2)$ and uniform stability $O(T2/n)$, resolving an open problem of Chen et al. (2018); Attia and Koren (2021). For more general geometries, we develop a variant of Mirror Descent for smooth optimization with convergence rate $\widetilde{O}(1/T)$ and uniform stability $O(T/n)$, leaving open the question of devising a general conversion method as in the Euclidean case.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.