Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 88 tok/s
Gemini 2.5 Pro 59 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 110 tok/s Pro
Kimi K2 210 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Cartan calculi on the free loop spaces (2207.05941v2)

Published 13 Jul 2022 in math.AT and math.KT

Abstract: A typical example of a Cartan calculus consists of the Lie derivative and the contraction with vector fields of a manifold on the derivation ring of the de Rham complex. In this manuscript, a second stage of the Cartan calculus is investigated. In a general setting, the stage is formulated with operators obtained by the Andr\'e-Quillen cohomology of a commutative differential graded algebra $A$ on the Hochschild homology of $A$ in terms of the homotopy Cartan calculus in the sense of Fiorenza and Kowalzig. Moreover, the Cartan calculus is interpreted geometrically with maps from the rational homotopy group of the monoid of self-homotopy equivalences on a space $M$ to the derivation ring on the loop cohomology of $M$. We also give a geometric description to Sullivan's isomorphism, which relates the geometric Cartan calculus to the algebraic one, via the $\Gamma_1$ map due to F\'elix and Thomas.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (36)
  1. M. Arkowitz and G. Lupton. Rational obstruction theory and rational homotopy sets. Math. Z., 235:525–539, 2000.
  2. J. Block and Andrey Lazarev. André–Quillen cohomology and rational homotopy of function spaces. Adv. Math., 193(1):18–39, 2005.
  3. A. K. Bousfield and V. K. A. M. Gugenheim. On PL De Rham theory and rational homotopy type, volume 179. Providence, RI: American Mathematical Society (AMS), 1976.
  4. Edgar H. jun. Brown and Robert H. Szczarba. On the rational homotopy type of function spaces. Trans. Am. Math. Soc., 349(12):4931–4951, 1997.
  5. Basic constructions in rational homotopy theory of function spaces. Ann. Inst. Fourier, 56(3):815–838, 2006.
  6. The rational homotopy Lie algebra of function spaces. Comment. Math. Helv., 83(4):723–739, 2008.
  7. Dan Burghelea and Micheline Vigué Poirrier. Cyclic homology of commutative algebras. I. Algebraic topology, rational homotopy, Proc. Conf., Louvain-la-Neuve/Belg. 1986, Lect. Notes Math. 1318, 51-72 (1988)., 1988.
  8. String topology. preprint, arXiv:math/9911159v1, 1999.
  9. Alain Connes. Non-commutative differential geometry. Publ. Math., Inst. Hautes Étud. Sci., 62:41–144, 1985.
  10. Rational homotopy theory, volume 205. New York, NY: Springer, 2001.
  11. The rational homotopy type of the space of self-equivalences of a fibration. Homology Homotopy Appl., 12(2):371–400, 2010.
  12. Monoid of self-equivalences and free loop spaces. Proc. Am. Math. Soc., 132(1):305–312, 2004.
  13. Higher brackets on cyclic and negative cyclic (co)homology. Int. Math. Res. Not., 2020(23):9148–9209, 2020.
  14. Ezra Getzler and John D. S. Jones. A∞-algebras and the cyclic bar complex. Ill. J. Math., 34(2):256–283, 1990.
  15. Andre Haefliger. Rational homotopy of the space of sections of a nilpotent bundle. Trans. Am. Math. Soc., 273:609–620, 1982.
  16. S. Halperin. Lectures on minimal models. Mém. Soc. Math. Fr., Nouv. Sér., 9-10:261, 1983.
  17. Localization of nilpotent groups and spaces, volume 15 of North-Holland Math. Stud. Elsevier, Amsterdam, 1975.
  18. A function space model approach to the rational evaluation subgroups. Math. Z., 258(3):521–555, 2008.
  19. Katsuhiko Kuribayashi. A rational model for the evaluation map. Georgian Math. J., 13(1):127–141, 2006.
  20. A reduction of the string bracket to the loop product. Algebraic Geom. Topol. (2021), in press, arXiv:2109.10536v1.
  21. The cohomology algebra of certain free loop spaces. Fundamenta Mathematicae, 154:57–73, 1997.
  22. On additive K-theory with the Loday–Quillen *-product. Math. Scand., 87:5–21, 2000.
  23. Poincaré duality and commutative differential graded algebras. Ann. Sci. Éc. Norm. Supér. (4), 41(4):497–511, 2008.
  24. Jean-Louis Loday. Cyclic homology., volume 301. Berlin: Springer, 1998.
  25. Luc Menichi. Van Den Bergh isomorphisms in string topology. J. Noncommut. Geom., 5(1):69–105, 2011.
  26. Takahito Naito. Cartan calculus in string topology. Proc. Am. Math. Soc., 152(4):1789–1801, 2024.
  27. ‘On loop-slant operations’ in preparation, 2022.
  28. Homology and cohomology via enriched bifunctors. Kyushu J. Math., 72(2):239–252, 2018.
  29. N. E. Steenrod. A convenient category of topological spaces. Mich. Math. J., 14:133–152, 1967.
  30. Dennis Sullivan. Infinitesimal computations in topology. Inst. Hautes Études Sci. Publ. Math., (47):269–331 (1978), 1977.
  31. Micheline Vigué-Poirrier. Homologie cyclique des espaces formels. J. Pure Appl. Algebra, 91(1-3):347–354, 1994.
  32. A model for cyclic homology and algebraic K-theory of 1-connected topological spaces. J. Differ. Geom., 22:243–253, 1985.
  33. The homology theory of the closed geodesic problem. J. Differ. Geom., 11:633–644, 1976.
  34. Shun Wakatsuki. Kohomology. https://github.com/shwaka/kohomology.
  35. George W. Whitehead. Elements of homotopy theory, volume 61. Springer, New York, NY, 1978.
  36. Toshihiro Yamaguchi. An example of fiber in fibrations whose Serre spectral sequences collapse. Czechoslovak Math. J., 55(130):997–1001, 2005.
Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.