Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 33 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 74 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 362 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Weighted averages in population annealing: analysis and general framework (2207.05535v1)

Published 12 Jul 2022 in cond-mat.stat-mech, cond-mat.dis-nn, and physics.comp-ph

Abstract: Population annealing is a powerful sequential Monte Carlo algorithm designed to study the equilibrium behavior of general systems in statistical physics through massive parallelism. In addition to the remarkable scaling capabilities of the method, it allows for measurements to be enhanced by weighted averaging, admitting to reduce both systematic and statistical errors based on independently repeated simulations. We give a self-contained introduction to population annealing with weighted averaging, generalize the method to a wide range of observables such as the specific heat and magnetic susceptibility and rigorously prove that the resulting estimators for finite systems are asymptotically unbiased for essentially arbitrary target distributions. Numerical results based on more than $107$ independent population annealing runs of the two-dimensional Ising ferromagnet and the Edwards-Anderson Ising spin glass are presented in depth. In the latter case, we also discuss efficient ways of measuring spin overlaps in population annealing simulations.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.