Papers
Topics
Authors
Recent
Search
2000 character limit reached

EfficientLEAF: A Faster LEarnable Audio Frontend of Questionable Use

Published 12 Jul 2022 in cs.SD, cs.LG, and eess.AS | (2207.05508v1)

Abstract: In audio classification, differentiable auditory filterbanks with few parameters cover the middle ground between hard-coded spectrograms and raw audio. LEAF (arXiv:2101.08596), a Gabor-based filterbank combined with Per-Channel Energy Normalization (PCEN), has shown promising results, but is computationally expensive. With inhomogeneous convolution kernel sizes and strides, and by replacing PCEN with better parallelizable operations, we can reach similar results more efficiently. In experiments on six audio classification tasks, our frontend matches the accuracy of LEAF at 3% of the cost, but both fail to consistently outperform a fixed mel filterbank. The quest for learnable audio frontends is not solved.

Citations (12)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.