Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 70 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 175 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4.5 Pro
2000 character limit reached

Graph tilings in incompatibility systems (2207.05386v2)

Published 12 Jul 2022 in math.CO

Abstract: An \emph{incompatibility system} $(G,\mathcal{F})$ consists of a graph $G$ and a family $\mathcal{F}={F_v}{v\in V(G)}$ over $G$ with $F_v\subseteq {{e,e'}\in {E(G)\choose 2}: e\cap e'={v}}$. We say that two edges $e,e'\in E(G)$ are \emph{incompatible} if ${e,e'}\in F_v$ for some $v\in V(G)$, and otherwise \emph{compatible}. A subgraph $H$ of $G$ is \emph{compatible} if every pair of edges in $H$ are compatible. An incompatibility system $(G,\mathcal{F})$ is \emph{$\Delta$-bounded} if for any vertex $v$ and any edge $e$ incident with $v$, there are at most $\Delta$ members of $F_v$ containing $e$. This notion was partly motivated by a concept of transition system introduced by Kotzig in 1968, and first formulated by Krivelevich, Lee and Sudakov to study the robustness of Hamiltonicity of Dirac graphs. We prove that for any $\alpha>0$ and any graph $H$ with $h$ vertices, there exists a constant $\mu>0$ such that for any sufficiently large $n$ with $n\in h\mathbb{N}$, if $G$ is an $n$-vertex graph with $\delta(G)\ge(1-\frac{1}{\chi*(H)}+\alpha)n$ and $(G,\mathcal{F})$ is a $\mu n$-bounded incompatibility system, then there exists a compatible $H$-factor in $G$, where the value $\chi*(H)$ is either the chromatic number $\chi(H)$ or the critical chromatic number $\chi{cr}(H)$ and we provide a dichotomy as in the K\"{u}hn--Osthus result. Moreover, we give examples $H$ for which there exists an $\mu n$-bounded incompatibility system $(G, \mathcal{F})$ with $n\in h\mathbb{N}$ and $\delta(G)\ge(1-\frac{1}{\chi*(H)}+\frac{\mu}{2})n$ such that $G$ contains no compatible $H$-factor. Unlike in the previous work of K\"{u}hn and Osthus on embedding $H$-factors, our proof uses the lattice-based absorption method.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.