Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 231 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4 33 tok/s Pro
2000 character limit reached

Efficient factored gradient descent algorithm for quantum state tomography (2207.05341v4)

Published 12 Jul 2022 in quant-ph and physics.data-an

Abstract: Reconstructing the state of quantum many-body systems is of fundamental importance in quantum information tasks, but extremely challenging due to the curse of dimensionality. In this work, we present an efficient quantum tomography protocol that combines the state-factored with eigenvalue mapping to address the rank-deficient issue and incorporates a momentum-accelerated gradient descent algorithm to speed up the optimization process. We implement extensive numerical experiments to demonstrate that our factored gradient descent algorithm efficiently mitigates the rank-deficient problem and admits orders of magnitude better tomography accuracy and faster convergence. We also find that our method can accomplish the full-state tomography of random 11-qubit mixed states within one minute.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.