Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 96 tok/s
Gemini 3.0 Pro 48 tok/s Pro
Gemini 2.5 Flash 155 tok/s Pro
Kimi K2 197 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Sparse Dynamic Factor Models with Loading Selection by Variational Inference (2207.05111v2)

Published 11 Jul 2022 in stat.ME and stat.CO

Abstract: In this paper we develop a novel approach for estimating large and sparse dynamic factor models using variational inference, also allowing for missing data. Inspired by Bayesian variable selection, we apply slab-and-spike priors onto the factor loadings to deal with sparsity. An algorithm is developed to find locally optimal mean field approximations of posterior distributions, which can be obtained computationally fast, making it suitable for nowcasting and frequently updated analyses in practice. We evaluate the method in two simulation experiments, which show well identified sparsity patterns and precise loading and factor estimation.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.