Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Boosting Heterogeneous Catalyst Discovery by Structurally Constrained Deep Learning Models (2207.05013v3)

Published 11 Jul 2022 in cond-mat.mtrl-sci and cs.LG

Abstract: The discovery of new catalysts is one of the significant topics of computational chemistry as it has the potential to accelerate the adoption of renewable energy sources. Recently developed deep learning approaches such as graph neural networks (GNNs) open new opportunity to significantly extend scope for modelling novel high-performance catalysts. Nevertheless, the graph representation of particular crystal structure is not a straightforward task due to the ambiguous connectivity schemes and numerous embeddings of nodes and edges. Here we present embedding improvement for GNN that has been modified by Voronoi tesselation and is able to predict the energy of catalytic systems within Open Catalyst Project dataset. Enrichment of the graph was calculated via Voronoi tessellation and the corresponding contact solid angles and types (direct or indirect) were considered as features of edges and Voronoi volumes were used as node characteristics. The auxiliary approach was enriching node representation by intrinsic atomic properties (electronegativity, period and group position). Proposed modifications allowed us to improve the mean absolute error of the original model and the final error equals to 651 meV per atom on the Open Catalyst Project dataset and 6 meV per atom on the intermetallics dataset. Also, by consideration of additional dataset, we show that a sensible choice of data can decrease the error to values above physically-based 20 meV per atom threshold.

Citations (3)

Summary

We haven't generated a summary for this paper yet.