Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Catalysis distillation neural network for the few shot open catalyst challenge (2305.19545v1)

Published 31 May 2023 in physics.chem-ph, cs.CE, and cs.LG

Abstract: The integration of artificial intelligence and science has resulted in substantial progress in computational chemistry methods for the design and discovery of novel catalysts. Nonetheless, the challenges of electrocatalytic reactions and developing a large-scale LLM in catalysis persist, and the recent success of ChatGPT's (Chat Generative Pre-trained Transformer) few-shot methods surpassing BERT (Bidirectional Encoder Representation from Transformers) underscores the importance of addressing limited data, expensive computations, time constraints and structure-activity relationship in research. Hence, the development of few-shot techniques for catalysis is critical and essential, regardless of present and future requirements. This paper introduces the Few-Shot Open Catalyst Challenge 2023, a competition aimed at advancing the application of machine learning technology for predicting catalytic reactions on catalytic surfaces, with a specific focus on dual-atom catalysts in hydrogen peroxide electrocatalysis. To address the challenge of limited data in catalysis, we propose a machine learning approach based on MLP-Like and a framework called Catalysis Distillation Graph Neural Network (CDGNN). Our results demonstrate that CDGNN effectively learns embeddings from catalytic structures, enabling the capture of structure-adsorption relationships. This accomplishment has resulted in the utmost advanced and efficient determination of the reaction pathway for hydrogen peroxide, surpassing the current graph neural network approach by 16.1%.. Consequently, CDGNN presents a promising approach for few-shot learning in catalysis.

Summary

We haven't generated a summary for this paper yet.