Papers
Topics
Authors
Recent
2000 character limit reached

Hiding Your Signals: A Security Analysis of PPG-based Biometric Authentication

Published 10 Jul 2022 in cs.CR and cs.CV | (2207.04434v1)

Abstract: Recently, physiological signal-based biometric systems have received wide attention. Unlike traditional biometric features, physiological signals can not be easily compromised (usually unobservable to human eyes). Photoplethysmography (PPG) signal is easy to measure, making it more attractive than many other physiological signals for biometric authentication. However, with the advent of remote PPG (rPPG), unobservability has been challenged when the attacker can remotely steal the rPPG signals by monitoring the victim's face, subsequently posing a threat to PPG-based biometrics. In PPG-based biometric authentication, current attack approaches mandate the victim's PPG signal, making rPPG-based attacks neglected. In this paper, we firstly analyze the security of PPG-based biometrics, including user authentication and communication protocols. We evaluate the signal waveforms, heart rate and inter-pulse-interval information extracted by five rPPG methods, including four traditional optical computing methods (CHROM, POS, LGI, PCA) and one deep learning method (CL_rPPG). We conducted experiments on five datasets (PURE, UBFC_rPPG, UBFC_Phys, LGI_PPGI, and COHFACE) to collect a comprehensive set of results. Our empirical studies show that rPPG poses a serious threat to the authentication system. The success rate of the rPPG signal spoofing attack in the user authentication system reached 0.35. The bit hit rate is 0.6 in inter-pulse-interval-based security protocols. Further, we propose an active defence strategy to hide the physiological signals of the face to resist the attack. It reduces the success rate of rPPG spoofing attacks in user authentication to 0.05. The bit hit rate was reduced to 0.5, which is at the level of a random guess. Our strategy effectively prevents the exposure of PPG signals to protect users' sensitive physiological data.

Citations (4)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.