Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 81 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 37 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 110 tok/s Pro
Kimi K2 219 tok/s Pro
GPT OSS 120B 444 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Dynamical decoupling for superconducting qubits: a performance survey (2207.03670v3)

Published 8 Jul 2022 in quant-ph

Abstract: Dynamical Decoupling (DD) is perhaps the simplest and least resource-intensive error suppression strategy for improving quantum computer performance. Here we report on a large-scale survey of the performance of 60 different DD sequences from 10 families, including basic as well as advanced sequences with high order error cancellation properties and built-in robustness. The survey is performed using three different superconducting-qubit IBMQ devices, with the goal of assessing the relative performance of the different sequences in the setting of arbitrary quantum state preservation. We find that the high-order universally robust (UR) and quadratic DD (QDD) sequences generally outperform all other sequences across devices and pulse interval settings. Surprisingly, we find that DD performance for basic sequences such as CPMG and XY4 can be made to nearly match that of UR and QDD by optimizing the pulse interval, with the optimal interval being substantially larger than the minimum interval possible on each device.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (75)
  1. A. Montanaro, Quantum algorithms: An overview, NPJ Quantum Inf. 2, 15023 (2016).
  2. J. Preskill, Quantum Computing in the NISQ era and beyond, Quantum 2, 79 (2018).
  3. E. T. Campbell, B. M. Terhal, and C. Vuillot, Roads towards fault-tolerant universal quantum computation, Nature 549, 172 EP (2017).
  4. D. Gottesman, Opportunities and challenges in fault-tolerant quantum computation (2022), arXiv:2210.15844 [quant-ph] .
  5. K. L. Pudenz, T. Albash, and D. A. Lidar, Error-corrected quantum annealing with hundreds of qubits, Nat. Commun. 5, 3243 (2014).
  6. S. J. Devitt, Performing quantum computing experiments in the cloud, Physical Review A 94, 032329 (2016).
  7. W. Vinci, T. Albash, and D. A. Lidar, Nested quantum annealing correction, npj Quant. Inf. 2, 16017 (2016).
  8. J. R. Wootton and D. Loss, Repetition code of 15 qubits, Physical Review A 97, 052313 (2018).
  9. C. Vuillot, Is error detection helpful on ibm 5q chips ?, Quantum Inf. Comput. 18, 18, 0949 (2018).
  10. R. Harper and S. T. Flammia, Fault-tolerant logical gates in the ibm quantum experience, Physical Review Letters 122, 080504 (2019).
  11. L. Viola and S. Lloyd, Dynamical suppression of decoherence in two-state quantum systems, Phys. Rev. A 58, 2733 (1998).
  12. P. Zanardi, Symmetrizing evolutions, Physics Letters A 258, 77 (1999a).
  13. D. Vitali and P. Tombesi, Using parity kicks for decoherence control, Physical Review A 59, 4178 (1999).
  14. L.-M. Duan and G.-C. Guo, Suppressing environmental noise in quantum computation through pulse control, Physics Letters A 261, 139 (1999).
  15. L. Viola, E. Knill, and S. Lloyd, Dynamical decoupling of open quantum systems, Physical Review Letters 82, 2417 (1999a).
  16. S. Damodarakurup, M. Lucamarini, G. D. Giuseppe, D. Vitali, and P. Tombesi, Experimental inhibition of decoherence on flying qubits via “bang-bang” control, Phys. Rev. Lett. 103, 040502 (2009).
  17. Y. Sagi, I. Almog, and N. Davidson, Suppression of collisional decoherence in optically trapped atomic ensemble by bang-bang dynamical decoupling, in CLEO/QELS: 2010 Laser Science to Photonic Applications (2010) pp. 1–2.
  18. L. Viola, S. Lloyd, and E. Knill, Universal control of decoupled quantum systems, Phys. Rev. Lett. 83, 4888 (1999b).
  19. L. Viola, Quantum control via encoded dynamical decoupling, Phys. Rev. A 66, 012307 (2002).
  20. K. Khodjasteh and D. A. Lidar, Universal fault-tolerant quantum computation in the presence of spontaneous emission and collective dephasing, Physical Review Letters 89, 197904 (2002).
  21. L. Viola and E. Knill, Random decoupling schemes for quantum dynamical control and error suppression, Phys. Rev. Lett. 94, 060502 (2005).
  22. K. Khodjasteh and D. A. Lidar, Rigorous bounds on the performance of a hybrid dynamical-decoupling quantum-computing scheme, Physical Review A 78, 012355 (2008).
  23. D. A. Lidar, Towards fault tolerant adiabatic quantum computation, Phys. Rev. Lett. 100, 160506 (2008).
  24. H. K. Ng, D. A. Lidar, and J. Preskill, Combining dynamical decoupling with fault-tolerant quantum computation, Phys. Rev. A 84, 012305 (2011).
  25. G. A. Paz-Silva and D. A. Lidar, Optimally combining dynamical decoupling and quantum error correction, Sci. Rep. 3 (2013).
  26. A. M. Souza, Process tomography of robust dynamical decoupling with superconducting qubits, Quantum Information Processing 20, 237 (2021).
  27. B. Pokharel and D. Lidar, Better-than-classical Grover search via quantum error detection and suppression (2022a), arXiv:2211.04543 [quant-ph] .
  28. B. Pokharel and D. A. Lidar, Demonstration of algorithmic quantum speedup (2022b), arXiv:2207.07647 [quant-ph] .
  29. L. Capelluto and T. Alexander, OpenPulse: Software for Experimental Physicists in Quantum Computing (2021).
  30. K. Khodjasteh and D. A. Lidar, Fault-tolerant quantum dynamical decoupling, Physical Review Letters 95, 180501 (2005).
  31. G. S. Uhrig, Keeping a quantum bit alive by optimized π𝜋\piitalic_π-pulse sequences, Phys. Rev. Lett. 98, 100504 (2007).
  32. J. R. West, B. H. Fong, and D. A. Lidar, Near-optimal dynamical decoupling of a qubit, Physical Review Letters 104, 130501 (2010b), arXiv: 0908.4490.
  33. Z.-Y. Wang and R.-B. Liu, Protection of quantum systems by nested dynamical decoupling, Phys. Rev. A 83, 022306 (2011).
  34. E. L. Hahn, Spin Echoes, Physical Review 80, 580 (1950), publisher: American Physical Society.
  35. A. A. Maudsley, Modified Carr-Purcell-Meiboom-Gill sequence for NMR Fourier imaging applications, Journal of Magnetic Resonance 69, 488 (1986).
  36. H. Carr and E. Purcell, Effects of diffusion on free precession in nuclear magnetic resonance experiments, Phys. Rev. 94, 630 (1954).
  37. S. Meiboom and D. Gill, Modified Spin-Echo Method for Measuring Nuclear Relaxation Times, Review of Scientific Instruments 29, 688 (1958a), publisher: American Institute of Physics.
  38. M. Suzuki, On the convergence of exponential operators—the zassenhaus formula, bch formula and systematic approximants, Communications in Mathematical Physics 57, 193 (1977).
  39. P. Zanardi, Symmetrizing evolutions, Physics Letters A 258, 77 (1999b).
  40. M. S. Byrd and D. A. Lidar, Bang–bang operations from a geometric perspective, Quantum Information Processing 1, 19 (2002).
  41. G. A. Álvarez and D. Suter, Measuring the Spectrum of Colored Noise by Dynamical Decoupling, Physical Review Letters 107, 230501 (2011), publisher: American Physical Society.
  42. H. Uys, M. J. Biercuk, and J. J. Bollinger, Optimized noise filtration through dynamical decoupling, Phys. Rev. Lett. 103, 040501 (2009).
  43. G. Quiroz and D. A. Lidar, Quadratic dynamical decoupling with nonuniform error suppression, Phys. Rev. A 84, 042328 (2011).
  44. G. S. Uhrig and D. A. Lidar, Rigorous bounds for optimal dynamical decoupling, Physical Review A 82, 012301 (2010).
  45. W.-J. Kuo and D. A. Lidar, Quadratic dynamical decoupling: Universality proof and error analysis, Phys. Rev. A 84, 042329 (2011).
  46. Y. Xia, G. S. Uhrig, and D. A. Lidar, Rigorous performance bounds for quadratic and nested dynamical decoupling, Phys. Rev. A 84, 062332 (2011).
  47. L. Jiang and A. Imambekov, Universal dynamical decoupling of multiqubit states from environment, Physical Review A 84, 060302 (2011).
  48. S. Meiboom and D. Gill, Modified Spin-Echo Method for Measuring Nuclear Relaxation Times, Review of Scientific Instruments 29, 688 (1958b).
  49. L. Viola and E. Knill, Robust dynamical decoupling of quantum systems with bounded controls, Phys. Rev. Lett. 90, 037901 (2003a).
  50. G. Quiroz and D. A. Lidar, Optimized dynamical decoupling via genetic algorithms, Phys. Rev. A 88, 052306 (2013).
  51. A. M. Souza, G. A. Álvarez, and D. Suter, Robust Dynamical Decoupling for Quantum Computing and Quantum Memory, Physical Review Letters 106, 240501 (2011).
  52. L. Viola, Advances in decoherence control, Journal of Modern Optics 51, 2357 (2004).
  53. S. T. Smith, Bounded-strength dynamical control of a qubit based on eulerian cycles, M.Sc. Thesis  (2007).
  54. K. Khodjasteh, D. A. Lidar, and L. Viola, Arbitrarily accurate dynamical control in open quantum systems, Phys. Rev. Lett. 104, 090501 (2010).
  55. C. A. Ryan, J. S. Hodges, and D. G. Cory, Robust decoupling techniques to extend quantum coherence in diamond, Phys. Rev. Lett. 105, 200402 (2010).
  56. R. Freeman, Spin Choreography: Basic Steps in High Resolution NMR (Oxford University Press, Oxford, 1998).
  57. K. R. Brown, A. W. Harrow, and I. L. Chuang, Arbitrarily accurate composite pulse sequences, Physical Review A 70, 052318 (2004).
  58. IBM Quantum, https://quantum-computing.ibm.com (2021).
  59. K. Khodjasteh and D. A. Lidar, Performance of deterministic dynamical decoupling schemes: Concatenated and periodic pulse sequences, Phys. Rev. A 75, 062310 (2007).
  60. A. Zlokapa and A. Gheorghiu, A deep learning model for noise prediction on near-term quantum devices (2020), arXiv:2005.10811 [quant-ph] .
  61. N. Ezzell, naezzell/edd: edd arxiv v2 release (2023).
  62. B. Efron, Bootstrap Methods: Another Look at the Jackknife, in Breakthroughs in Statistics: Methodology and Distribution, edited by S. Kotz and N. L. Johnson (Springer New York, New York, NY, 1992) pp. 569–593.
  63. Wikipedia, Jarque–Bera test, https://en.wikipedia.org/wiki/Jarque-Bera_test (2023a).
  64. Wikipedia, Shaprio-Wilk test, https://en.wikipedia.org/wiki/Shapiro-Wilk_test (2023b).
  65. A. M. Souza, Process tomography of Robust Dynamical Decoupling in Superconducting Qubits, arXiv:2006.10585 [quant-ph]  (2020), arXiv: 2006.10585.
  66. S. Wolfram, Mathematica: A System for Doing Mathematics by Computer, version 3.0 for SGI.
  67. Wolfram Research, NonlinearModelFit, https://reference.wolfram.com/language/ref/NonlinearModelFit.html (2008).
  68. J. H. Williams, Quantifying Measurement, 2053-2571 (Morgan & Claypool Publishers, 2016).
  69. Wikipedia, Akaike information criterion, https://en.wikipedia.org/wiki/Akaike_information_criterion (2023c).
  70. Wikipedia, Nyquist–Shannon sampling theorem, https://en.wikipedia.org/wiki/Nyquist-Shannon_sampling_theorem (2023d).
  71. W. Research, Interpolation, https://reference.wolfram.com/language/ref/Interpolation.html (2008).
  72. Wikipedia, Cubic Hermite spline (2022a).
  73. Wikipedia, Spline interpolation (2022b).
  74. U. Haeberlen, High Resolution NMR in Solids, Advances in Magnetic Resonance Series, Supplement 1 (Academic Press, New York, 1976).
  75. L. Viola and E. Knill, Verification procedures for quantum noiseless subsystems, Physical Review A 68, 032311 (2003b).
Citations (70)

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube