Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multi-qubit Dynamical Decoupling for Enhanced Crosstalk Suppression (2403.05391v3)

Published 8 Mar 2024 in quant-ph

Abstract: Dynamical decoupling (DD) is one of the simplest error suppression methods, aiming to enhance the coherence of qubits in open quantum systems. Moreover, DD has demonstrated effectiveness in reducing coherent crosstalk, one major error source in near-term quantum hardware, which manifests from two types of interactions. Static crosstalk exists in various hardware platforms, including superconductor and semiconductor qubits, by virtue of always-on qubit-qubit coupling. Additionally, driven crosstalk may occur as an unwanted drive term due to leakage from driven gates on other qubits. Here we explore a novel staggered DD protocol tailored for multi-qubit systems that suppresses the decoherence error and both types of coherent crosstalk. We develop two experimental setups -- an "idle-idle" experiment in which two pairs of qubits undergo free evolution simultaneously and a "driven-idle" experiment in which one pair is continuously driven during the free evolution of the other pair. These experiments are performed on an IBM Quantum superconducting processor and demonstrate the significant impact of the staggered DD protocol in suppressing both types of coherent crosstalk. When compared to the standard DD sequences from state-of-the-art methodologies with the application of X2 sequences, our staggered DD protocol enhances circuit fidelity by 19.7% and 8.5%, respectively, in addressing these two crosstalk types.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (14)
  1. Y. Li and S. C. Benjamin, Efficient variational quantum simulator incorporating active error minimization, Physical Review X 7, 021050 (2017).
  2. K. Temme, S. Bravyi, and J. M. Gambetta, Error mitigation for short-depth quantum circuits, Physical review letters 119, 180509 (2017).
  3. J. J. Wallman and J. Emerson, Noise tailoring for scalable quantum computation via randomized compiling, Phys. Rev. A 94, 052325 (2016).
  4. L. Viola and S. Lloyd, Dynamical suppression of decoherence in two-state quantum systems, Physical Review A 58, 2733 (1998).
  5. L. Viola, E. Knill, and S. Lloyd, Dynamical decoupling of open quantum systems, Physical Review Letters 82, 2417 (1999).
  6. S. Meiboom and D. Gill, Modified spin-echo method for measuring nuclear relaxation times, Review of scientific instruments 29, 688 (1958).
  7. G. S. Uhrig, Keeping a quantum bit alive by optimized π𝜋\piitalic_π-pulse sequences, Physical Review Letters 98, 100504 (2007).
  8. S. Niu and A. Todri-Sanial, Effects of dynamical decoupling and pulse-level optimizations on ibm quantum computers, IEEE Transactions on Quantum Engineering 3, 1 (2022).
  9. B. Pokharel and D. A. Lidar, Demonstration of algorithmic quantum speedup, Physical Review Letters 130, 210602 (2023).
  10. A. M. Souza, Process tomography of robust dynamical decoupling with superconducting qubits, Quantum Information Processing 20, 237 (2021).
  11. C. Tong, H. Zhang, and B. Pokharel, Empirical learning of dynamical decoupling on quantum processors (2024), arXiv:2403.02294 [quant-ph] .
  12. E. Magesan, J. M. Gambetta, and J. Emerson, Scalable and Robust Randomized Benchmarking of Quantum Processes, Physical Review Letters 106, 180504 (2011).
  13. E. Magesan, J. M. Gambetta, and J. Emerson, Characterizing quantum gates via randomized benchmarking, Physical Review A 85, 042311 (2012).
  14. T. Yuge, S. Sasaki, and Y. Hirayama, Measurement of the noise spectrum using a multiple-pulse sequence, Phys. Rev. Lett. 107, 170504 (2011).
Citations (8)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com
Youtube Logo Streamline Icon: https://streamlinehq.com