Papers
Topics
Authors
Recent
2000 character limit reached

Assessing inter-rater reliability with heterogeneous variance components models: Flexible approach accounting for contextual variables (2207.02071v2)

Published 5 Jul 2022 in stat.ME, stat.AP, and stat.CO

Abstract: Inter-rater reliability (IRR), which is a prerequisite of high-quality ratings and assessments, may be affected by contextual variables such as the rater's or ratee's gender, major, or experience. Identification of such heterogeneity sources in IRR is important for implementation of policies with the potential to decrease measurement error and to increase IRR by focusing on the most relevant subgroups. In this study, we propose a flexible approach for assessing IRR in cases of heterogeneity due to covariates by directly modeling differences in variance components. We use Bayes factors to select the best performing model, and we suggest using Bayesian model-averaging as an alternative approach for obtaining IRR and variance component estimates, allowing us to account for model uncertainty. We use inclusion Bayes factors considering the whole model space to provide evidence for or against differences in variance components due to covariates. The proposed method is compared with other Bayesian and frequentist approaches in a simulation study, and we demonstrate its superiority in some situations. Finally, we provide real data examples from grant proposal peer-review, demonstrating the usefulness of this method and its flexibility in the generalization of more complex designs.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.