Papers
Topics
Authors
Recent
Search
2000 character limit reached

Scene-Aware Prompt for Multi-modal Dialogue Understanding and Generation

Published 5 Jul 2022 in cs.CL and cs.CV | (2207.01823v1)

Abstract: This paper introduces the schemes of Team LingJing's experiments in NLPCC-2022-Shared-Task-4 Multi-modal Dialogue Understanding and Generation (MDUG). The MDUG task can be divided into two phases: multi-modal context understanding and response generation. To fully leverage the visual information for both scene understanding and dialogue generation, we propose the scene-aware prompt for the MDUG task. Specifically, we utilize the multi-tasking strategy for jointly modelling the scene- and session- multi-modal understanding. The visual captions are adopted to aware the scene information, while the fixed-type templated prompt based on the scene- and session-aware labels are used to further improve the dialogue generation performance. Extensive experimental results show that the proposed method has achieved state-of-the-art (SOTA) performance compared with other competitive methods, where we rank the 1-st in all three subtasks in this MDUG competition.

Citations (2)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (5)

Collections

Sign up for free to add this paper to one or more collections.