Papers
Topics
Authors
Recent
2000 character limit reached

The Floquet Baxterisation (2206.15142v2)

Published 30 Jun 2022 in math-ph, cond-mat.stat-mech, hep-th, math.MP, math.QA, and quant-ph

Abstract: Quantum integrability has proven to be a useful tool to study quantum many-body systems out of equilibrium. In this paper we construct a generic framework for integrable quantum circuits through the procedure of Floquet Baxterisation. The integrability is guaranteed by establishing a connection between Floquet evolution operators and inhomogeneous transfer matrices obtained from the Yang-Baxter relations. This allows us to construct integrable Floquet evolution operators with arbitrary depths and various boundary conditions. Furthermore, we focus on the example related to the staggered 6-vertex model. In the scaling limit we establish a connection of this Floquet protocol with a non-rational conformal field theory. Employing the properties of the underlying affine Temperley--Lieb algebraic structure, we demonstrate the dynamical anti-unitary symmetry breaking in the easy-plane regime. We also give an overview of integrability-related quantum circuits, highlighting future research directions.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (113)
  1. L. Onsager, Crystal Statistics. I. A Two-Dimensional Model with an Order-Disorder Transition, Phys. Rev. 65, 117 (1944), 10.1103/PhysRev.65.117.
  2. R. Baxter, Exactly solved models in statistical mechanics, Academic Press, ISBN 978-0-486-46271-4 (1982).
  3. M. Gaudin, The Bethe Wavefunction, Cambridge University Press (2014).
  4. Review of AdS/CFT Integrability: An Overview, Lett. Math. Phys. 99, 3 (2012), 10.1007/s11005-011-0529-2, 1012.3982.
  5. H. A. Bethe, Zur Theorie der Metalle. i. Eigenwerte und Eigenfunktionen der linearen Atomkette, Zeit. für Physik 71, 205 (1931), 10.1007/BF01341708.
  6. Time Evolution of Local Observables After Quenching to an Integrable Model, Phys. Rev. Lett. 110, 257203 (2013), 10.1103/PhysRevLett.110.257203.
  7. J.-S. Caux, The Quench Action, J. Stat. Mech. 2016(6), 064006 (2016), 10.1088/1742-5468/2016/06/064006.
  8. Emergent Hydrodynamics in Integrable Quantum Systems Out of Equilibrium, Phys. Rev. X 6, 041065 (2016), 10.1103/PhysRevX.6.041065.
  9. Transport in Out-of-Equilibrium X⁢X⁢Z𝑋𝑋𝑍XXZitalic_X italic_X italic_Z Chains: Exact Profiles of Charges and Currents, Phys. Rev. Lett. 117, 207201 (2016), 10.1103/PhysRevLett.117.207201.
  10. Formation of robust bound states of interacting microwave photons, Nature 612(7939), 240 (2022), 10.1038/s41586-022-05348-y.
  11. R. J. Baxter, Generalized Ferroelectric Model on a Square Lattice, Stud. Appl. Math. 50(1), 51 (1971), https://doi.org/10.1002/sapm197150151.
  12. R. J. Baxter, S. B. Kelland and F. Y. Wu, Equivalence of the Potts model or Whitney polynomial with an ice-type model, J. Phys. A 9(3), 397 (1976), 10.1088/0305-4470/9/3/009.
  13. C. Destri and H. de Vega, Light-cone lattices and the exact solution of chiral fermion and sigma models, J. Phys. A 22(9), 1329 (1989), 10.1088/0305-4470/22/9/022.
  14. C. Destri and H. de Vega, Bethe ansatz and quantum groups: the light-cone lattice approach (I). Six vertex and SOS models, Nucl. Phys. B 374(3), 692 (1992), 10.1016/0550-3213(92)90405-z.
  15. M. Vanicat, L. Zadnik and T. Prosen, Integrable Trotterization: Local Conservation Laws and Boundary Driving, Phys. Rev. Lett. 121, 030606 (2018), 10.1103/PhysRevLett.121.030606.
  16. M. Medenjak, T. Prosen and L. Zadnik, Rigorous bounds on dynamical response functions and time-translation symmetry breaking, SciPost Phys. 9, 3 (2020), 10.21468/SciPostPhys.9.1.003.
  17. Correlations and commuting transfer matrices in integrable unitary circuits, SciPost Phys. 12, 7 (2022), 10.21468/SciPostPhys.12.1.007.
  18. L. Sá, P. Ribeiro and T. Prosen, Integrable nonunitary open quantum circuits, Phys. Rev. B 103, 115132 (2021), 10.1103/PhysRevB.103.115132.
  19. T. Gombor and B. Pozsgay, Integrable spin chains and cellular automata with medium-range interaction, Phys. Rev. E 104, 054123 (2021), 10.1103/PhysRevE.104.054123.
  20. L. Su and I. Martin, Integrable nonunitary quantum circuits, Phys. Rev. B 106, 134312 (2022), 10.1103/PhysRevB.106.134312.
  21. Quantum entanglement growth under random unitary dynamics, Phys. Rev. X 7, 031016 (2017), 10.1103/PhysRevX.7.031016.
  22. Operator Hydrodynamics, OTOCs, and Entanglement Growth in Systems without Conservation Laws, Phys. Rev. X 8, 021013 (2018), 10.1103/PhysRevX.8.021013.
  23. A. Nahum, S. Vijay and J. Haah, Operator Spreading in Random Unitary Circuits, Phys. Rev. X 8, 021014 (2018), 10.1103/PhysRevX.8.021014.
  24. Solution of a Minimal Model for Many-Body Quantum Chaos, Phys. Rev. X 8, 041019 (2018), 10.1103/PhysRevX.8.041019.
  25. Quantum many-body dynamics of coupled double-well superlattices, Phys. Rev. A 78, 012330 (2008), 10.1103/PhysRevA.78.012330.
  26. Floquet integrability and long-range entanglement generation in the one-dimensional quantum Potts model, Phys. Rev. B 105, 144306 (2022), 10.1103/PhysRevB.105.144306.
  27. Quantum time dynamics employing the yang-baxter equation for circuit compression, Phys. Rev. A 106, 012412 (2022), 10.1103/PhysRevA.106.012412.
  28. I. L. Aleiner, Bethe Ansatz Solutions for Certain Periodic Quantum Circuits, Ann. Phys. 433, 168593 (2021), 10.1016/j.aop.2021.168593.
  29. Algebraic Bethe Circuits, Quantum 6, 796 (2022), 10.22331/q-2022-09-08-796.
  30. V. Gritsev and A. Polkovnikov, Integrable Floquet dynamics, SciPost Phys. 2, 021 (2017), 10.21468/SciPostPhys.2.3.021.
  31. Relations between the ‘percolation’ and ‘colouring’ problem and other graph-theoretical problems associated with regular planar lattices: some exact results for the ‘percolation’ problem, Proc. R. Soc. Lond. A 322(1549), 251 (1971), 10.1098/rspa.1971.0067.
  32. Y. Ikhlef, J. Jacobsen and H. Saleur, A staggered six-vertex model with non-compact continuum limit, Nucl. Phys. B 789(3), 483 (2008), 10.1016/j.nuclphysb.2007.07.004.
  33. Integrable Spin Chain for the SL⁢(2,R)/𝐔⁢(1)normal-SL2𝑅𝐔1\mathrm{SL}(2,R)/\mathbf{U}(1)roman_SL ( 2 , italic_R ) / bold_U ( 1 ) Black Hole Sigma Model, Phys. Rev. Lett. 108, 081601 (2012), 10.1103/PhysRevLett.108.081601.
  34. C. Candu and Y. Ikhlef, Nonlinear integral equations for the SL⁢(2,ℝ)/U⁢(1)normal-SL2ℝnormal-U1\mathrm{SL}(2,\mathbb{R})/\mathrm{U}(1)roman_SL ( 2 , blackboard_R ) / roman_U ( 1 ) black hole sigma model, J. Phys. A 46(41), 415401 (2013), 10.1088/1751-8113/46/41/415401.
  35. H. Frahm and A. Seel, The staggered six-vertex model: Conformal invariance and corrections to scaling, Nucl. Phys. B 879, 382 (2014), 10.1016/j.nuclphysb.2013.12.015.
  36. H. Frahm and S. Gehrmann, Finite size spectrum of the staggered six-vertex model with Uq⁢(𝔰⁢𝔩⁢(2))subscript𝑈𝑞𝔰𝔩2U_{q}(\mathfrak{sl}(2))italic_U start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ( fraktur_s fraktur_l ( 2 ) )-invariant boundary conditions, J. High Energy Phys. 2022(1) (2022), 10.1007/jhep01(2022)070.
  37. V. V. Bazhanov, G. A. Kotousov and S. L. Lukyanov, Equilibrium density matrices for the 2D black hole sigma models from an integrable spin chain, J. High Energy Phys. 2021(3) (2021), 10.1007/jhep03(2021)169.
  38. Scaling limit of the 𝒵2subscript𝒵2\mathcal{Z}_{2}caligraphic_Z start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT invariant inhomogeneous six-vertex model, Nucl. Phys. B 965, 115337 (2021), 10.1016/j.nuclphysb.2021.115337.
  39. S. Elitzur, A. Forge and E. Rabinovici, Some global aspects of string compactifications, Nucl. Phys. B 359, 581 (1991), 10.1016/0550-3213(91)90073-7.
  40. G. Mandal, A. M. Sengupta and S. R. Wadia, Classical solutions of two-dimensional string theory, Mod. Phys. Lett. A 6, 1685 (1991), 10.1142/S0217732391001822.
  41. E. Witten, String theory and black holes, Phys. Rev. D 44, 314 (1991), 10.1103/PhysRevD.44.314.
  42. R. Dijkgraaf, H. L. Verlinde and E. P. Verlinde, String propagation in a black hole geometry, Nucl. Phys. B 371, 269 (1992), 10.1016/0550-3213(92)90237-6.
  43. K. Sfetsos, Branes for Higgs phases and exact conformal field theories, J. High Energy Phys. 1999(01), 015 (1999), 10.1088/1126-6708/1999/01/015.
  44. J. Maldacena and H. Ooguri, Strings in AdS3subscriptnormal-AdS3\mathrm{AdS}_{3}roman_AdS start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT and the SL⁢(2,R)normal-SL2normal-R\mathrm{SL(2,R)}roman_SL ( 2 , roman_R ) WZW model. I: The spectrum, J. Math. Phys. 42(7), 2929 (2001), 10.1063/1.1377273.
  45. J. Maldacena, H. Ooguri and J. Son, Strings in AdS3subscriptnormal-AdS3\mathrm{AdS}_{3}roman_AdS start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT and the SL⁢(2,R)normal-SL2normal-R\mathrm{SL(2,R)}roman_SL ( 2 , roman_R ) WZW model. II: Euclidean black hole, J. Math. Phys. 42(7), 2961 (2001), 10.1063/1.1377039.
  46. A. Hanany, N. Prezas and J. Troost, The Partition Function of the Two-Dimensional Black Hole Conformal Field Theory, J. High Energy Phys. 2002(04), 014 (2002), 10.1088/1126-6708/2002/04/014.
  47. V. Schomerus, Non-compact string backgrounds and non-rational CFT, Phys. Rep. 431(2), 39 (2006), 10.1016/j.physrep.2006.05.001.
  48. Integrable Floquet systems related to logarithmic conformal field theory, SciPost Phys. 14, 084 (2023), 10.21468/SciPostPhys.14.4.084.
  49. A. Y. Volkov, Quantum Volterra model, Phys. Lett. A 167(4), 345 (1992), 10.1016/0375-9601(92)90270-v.
  50. L. Faddeev and A. Y. Volkov, Hirota equation as an example of an integrable symplectic map, Lett. Math. Phys. 32(2), 125 (1994), 10.1007/bf00739422.
  51. N. Y. Reshetikhin and H. Saleur, Lattice regularization of massive and massless integrable field theories, Nucl. Phys. B 419(3), 507 (1994), 10.1016/0550-3213(94)90342-5.
  52. L. D. Faddeev, How Algebraic Bethe Ansatz works for integrable model, arXiv preprint arXiv:hep-th/9605187 (1996), 10.48550/arXiv.hep-th/9605187.
  53. Temporal entanglement, quasiparticles, and the role of interactions, Phys. Rev. Lett. 128, 220401 (2022), 10.1103/PhysRevLett.128.220401.
  54. V. G. Drinfeld, On some unsolved problems in quantum group theory, In Lecture Notes in Mathematics, pp. 1–8. Springer Berlin Heidelberg, 10.1007/BFb0101175 (1992).
  55. A. Weinstein and P. Xu, Classical solutions of the quantum Yang-Baxter equation, Commun. Math. Phys. 148(2), 309 (1992), 10.1007/bf02100863.
  56. J. Hietarinta, Permutation-type solutions to the Yang–Baxter and other n𝑛nitalic_n-simplex equations, J. Phys. A 30(13), 4757 (1997), 10.1088/0305-4470/30/13/024.
  57. V. M. Bukhshtaber, The Yang-Baxter transformation, Russ. Math. Surv. 53(6), 1343 (1998), 10.1070/rm1998v053n06abeh000094.
  58. P. Etingof, T. Schedler and A. Soloviev, Set-theoretical solutions to the quantum Yang-Baxter equation, Duke Math. J. 100(2), 169 (1999), 10.1215/S0012-7094-99-10007-X.
  59. A. Soloviev, Non-unitary set-theoretical solutions to the Quantum Yang-Baxter Equation, Math. Res. Lett. 7(5), 577 (2000), 10.4310/MRL.2000.v7.n5.a4.
  60. P. Etingof, Geometric crystals and set-theoretical solutions to the quantum Yang-Baxter equation, Commun. Algebra 31(4), 1961 (2001), 10.1081/AGB-120018516.
  61. P. Xu, Quantum Dynamical Yang-Baxter Equation Over a Nonabelian Base, Commun. Math. Phys. 226(3), 475 (2002), 10.1007/s002200200621.
  62. T. Gateva-Ivanova, Set-theoretic solutions of the yang–baxter equation, braces and symmetric groups, Adv. Math. 338, 649 (2018), https://doi.org/10.1016/j.aim.2018.09.005.
  63. T. Gateva-Ivanova, A combinatorial approach to noninvolutive set-theoretic solutions of the Yang-Baxter equation, Publ. Mat. 65(2), 747 (2021), 10.5565/PUBLMAT6522111.
  64. F. Catino, I. Colazzo and P. Stefanelli, Set-theoretic solutions to the Yang–Baxter equation and generalized semi-braces, Forum Math. 33(3), 757 (2021), doi:10.1515/forum-2020-0082.
  65. A. Doikou, Set-theoretic Yang–Baxter equation, braces and Drinfeld twists, J. Phys. A 54(41), 415201 (2021), 10.1088/1751-8121/ac219e.
  66. A. Veselov, Yang-Baxter maps and integrable dynamics, Phys. Lett. A 314(3), 214 (2003), https://doi.org/10.1016/S0375-9601(03)00915-0.
  67. Lax Matrices for Yang-Baxter Maps, J. Nonlinear Math. Phys. 10(Supplement 2), 223 (2003), 10.2991/jnmp.2003.10.s2.8.
  68. Yang-Baxter maps and matrix solitons, 10.48550/ARXIV.MATH-PH/0303032 (2003).
  69. Integrable systems on quad-graphs, Int. Math. Res. Not. 2002(11), 573 (2002), 10.1155/S1073792802110075, https://academic.oup.com/imrn/article-pdf/2002/11/573/2051019/2002-11-573.pdf.
  70. V. Adler, A. Bobenko and Y. Suris, Classification of Integrable Equations on Quad-Graphs. The Consistency Approach, Commun. Math. Phys. 233(3), 513 (2003), 10.1007/s00220-002-0762-8.
  71. F. Nijhoff, Lax pair for the Adler (lattice Krichever–Novikov) system, Phys. Lett. A 297(1-2), 49 (2002), 10.1016/s0375-9601(02)00287-6.
  72. A. P. Veselov, Yang-Baxter maps: dynamical point of view, 10.48550/ARXIV.MATH/0612814 (2006).
  73. Yang-Baxter maps, discrete integrable equations and quantum groups, Nucl. Phys. B 926, 509 (2018), 10.1016/j.nuclphysb.2017.11.017.
  74. T. Gombor and B. Pozsgay, Integrable deformations of superintegrable quantum circuits, 10.48550/ARXIV.2205.02038 (2022).
  75. T. Gombor and B. Pozsgay, Superintegrable cellular automata and dual unitary gates from Yang-Baxter maps, SciPost Phys. 12, 102 (2022), 10.21468/SciPostPhys.12.3.102.
  76. S. Fomin and A. N. Kirillov, Universal exponential solution of the Yang-Baxter equation, Lett. Math. Phys. 37(3), 273 (1996), 10.1007/bf00343191.
  77. S. Fomin and A. N. Kirillov, The Yang-Baxter equation, symmetric functions, and Schubert polynomials, Discrete Math. 153(1), 123 (1996), https://doi.org/10.1016/0012-365X(95)00132-G.
  78. R. J. Baxter, Solvable eight vertex model on an arbitrary planar lattice, Phil. Trans. Roy. Soc. Lond. A 289, 315 (1978), 10.1098/rsta.1978.0062.
  79. V. E. Korepin, Completely integrable models in quasicrystals, Commun. Math. Phys. 110(1), 157 (1987), 10.1007/BF01209021.
  80. A. B. Zamolodchikov, Tetrahedron equations and the relativistic S-matrix of straight-strings in 2+1-Dimensions, Commun. Math. Phys. 79(4), 489 (1981), 10.1007/BF01209309.
  81. Quantum Zeno effect and the many-body entanglement transition, Phys. Rev. B 98, 205136 (2018), 10.1103/PhysRevB.98.205136.
  82. B. Skinner, J. Ruhman and A. Nahum, Measurement-Induced Phase Transitions in the Dynamics of Entanglement, Phys. Rev. X 9, 031009 (2019), 10.1103/PhysRevX.9.031009.
  83. Unitary-projective entanglement dynamics, Phys. Rev. B 99, 224307 (2019), 10.1103/PhysRevB.99.224307.
  84. K. Sakai, Dynamical correlation functions of the XXZ model at finite temperature, Journal of Physics A: Mathematical and Theoretical 40(27), 7523 (2007), 10.1088/1751-8113/40/27/007.
  85. A. J. A. James, W. D. Goetze and F. H. L. Essler, Finite-temperature dynamical structure factor of the Heisenberg-Ising chain, Phys. Rev. B 79, 214408 (2009), 10.1103/PhysRevB.79.214408.
  86. Exact Real-Time Longitudinal Correlation Functions of the Massive X⁢X⁢Z𝑋𝑋𝑍XXZitalic_X italic_X italic_Z Chain, Phys. Rev. Lett. 126, 210602 (2021), 10.1103/PhysRevLett.126.210602.
  87. M. V. Medvedyeva, F. H. L. Essler and T. Prosen, Exact bethe ansatz spectrum of a tight-binding chain with dephasing noise, Phys. Rev. Lett. 117, 137202 (2016), 10.1103/PhysRevLett.117.137202.
  88. Yang-Baxter integrable Lindblad equations, SciPost Phys. 8, 44 (2020), 10.21468/SciPostPhys.8.3.044.
  89. D. A. Rowlands and A. Lamacraft, Noisy Spins and the Richardson-Gaudin Model, Phys. Rev. Lett. 120, 090401 (2018), 10.1103/PhysRevLett.120.090401.
  90. N. Shibata and H. Katsura, Dissipative quantum Ising chain as a non-Hermitian Ashkin-Teller model, Phys. Rev. B 99, 224432 (2019), 10.1103/PhysRevB.99.224432.
  91. M. de Leeuw, C. Paletta and B. Pozsgay, Constructing Integrable Lindblad Superoperators, Phys. Rev. Lett. 126, 240403 (2021), 10.1103/PhysRevLett.126.240403.
  92. V. Jones, Baxterization, Int. J. Mod. Phys. B 04(05), 701 (1990), 10.1142/s021797929000036x.
  93. P. Di Francesco and P. Zinn-Justin, Around the Razumov–Stroganov Conjecture: Proof of a Multi-Parameter Sum Rule, Electron. J. Comb. 12, R6 (2005), 10.37236/1903.
  94. E. K. Sklyanin, Boundary conditions for integrable quantum systems, J. Phys. A 21(10), 2375 (1988), 10.1088/0305-4470/21/10/015.
  95. L. Mezincescu and R. I. Nepomechie, Integrable open spin chains with nonsymmetric R-matrices, J. Phys. A 24(1), L17 (1991), 10.1088/0305-4470/24/1/005.
  96. V. Pasquier and H. Saleur, Common structures between finite systems and conformal field theories through quantum groups, Nucl. Phys. B. 330(2-3), 523 (1990), 10.1016/0550-3213(90)90122-t.
  97. J. L. Jacobsen, Integrability in statistical physics and quantum spin chains, In Integrability: From Statistical Systems to Gauge Theory, pp. 1–59. Oxford University Press, 10.1093/oso/9780198828150.003.0001 (2019).
  98. Y. Miao, J. Lamers and V. Pasquier, On the Q operator and the spectrum of the XXZ model at root of unity, SciPost Phys. 11, 67 (2021), 10.21468/SciPostPhys.11.3.067.
  99. K. Fabricius and B. M. McCoy, Bethe’s Equation Is Incomplete for the XXZ Model at Roots of Unity, J. Stat. Phys. 103, 647 (2001), 10.1023/A:1010380116927.
  100. K. Fabricius and B. M. McCoy, Completing Bethe’s Equations at Roots of Unity, J. Stat. Phys. 104, 573 (2001), 10.1023/A:1010372504158.
  101. R. J. Baxter, Completeness of the Bethe Ansatz for the Six and Eight-Vertex Models, J. Stat. Phys. 108, 1 (2002), 10.1023/A:1015437118218.
  102. Y. Miao, Conjectures on Hidden Onsager Algebra Symmetries in Interacting Quantum Lattice Models, SciPost Phys. 11, 66 (2021), 10.21468/SciPostPhys.11.3.066.
  103. Algebraic Bethe ansatz for the quantum group invariant open XXZ chain at roots of unity, Nucl. Phys. B. 909, 796 (2016), 10.1016/j.nuclphysb.2016.06.007.
  104. F. J. Dyson, Thermodynamic behavior of an ideal ferromagnet, Phys. Rev. 102, 1230 (1956), 10.1103/PhysRev.102.1230.
  105. A. Fring, An introduction to 𝒫⁢𝒯𝒫𝒯\mathcal{PT}caligraphic_P caligraphic_T-symmetric quantum mechanics - time-dependent systems, arXiv preprint arXiv:2201.05140 (2022), 10.48550/arXiv.2201.05140.
  106. C. M. Bender, Making sense of non-Hermitian Hamiltonians, Rep. Prog. Phys. 70(6), 947 (2007), 10.1088/0034-4885/70/6/R03.
  107. C. Korff and R. Weston, PT symmetry on the lattice: the quantum group invariant XXZ spin chain, J. Phys. A 40(30), 8845 (2007), 10.1088/1751-8113/40/30/016.
  108. A. Mostafazadeh, Pseudo-Hermitian Representation of Quantum Mechanics, Int. J. Geom. Meth. Mod. Phys. 07(07), 1191 (2010), 10.1142/s0219887810004816.
  109. A. Mostafazadeh, Pseudo-Hermiticity versus PT symmetry: The necessary condition for the reality of the spectrum of a non-Hermitian Hamiltonian, J. Math. Phys. 43(1), 205 (2002), 10.1063/1.1418246.
  110. A. Mostafazadeh, Pseudo-Hermiticity versus PT-symmetry. II. A complete characterization of non-Hermitian Hamiltonians with a real spectrum, J. Math. Phys. 43(5), 2814 (2002), 10.1063/1.1461427.
  111. E. P. Wigner, Normal Form of Antiunitary Operators, J. Math. Phys. 1(5), 409 (1960), 10.1063/1.1703672.
  112. Integrable Matrix Models in Discrete Space-Time, SciPost Phys. 9, 38 (2020), 10.21468/SciPostPhys.9.3.038.
  113. Anisotropic Landau-Lifshitz Model in Discrete Space-Time, SciPost Phys. 11, 51 (2021), 10.21468/SciPostPhys.11.3.051.
Citations (12)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.