Papers
Topics
Authors
Recent
2000 character limit reached

Induced subgraphs and path decompositions (2206.15054v1)

Published 30 Jun 2022 in math.CO

Abstract: A graph $H$ is an induced subgraph of a graph $G$ if a graph isomorphic to $H$ can be obtained from $G$ by deleting vertices. Recently, there has been significant interest in understanding the unavoidable induced subgraphs for graphs of large treewidth. Motivated by this work, we consider the analogous problem for pathwidth: what are the unavoidable induced subgraphs for graphs of large pathwidth? While resolving this question in the general setting looks challenging, we prove various results for sparse graphs. In particular, we show that every graph with bounded maximum degree and sufficiently large pathwidth contains a subdivision of a large complete binary tree or the line graph of a subdivision of a large complete binary tree as an induced subgraph. Similarly, we show that every graph excluding a fixed minor and with sufficiently large pathwidth contains a subdivision of a large complete binary tree or the line graph of a subdivision of a large complete binary tree as an induced subgraph. Finally, we present a characterisation for when a hereditary class defined by a finite set of forbidden induced subgraphs has bounded pathwidth.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.