Diffeomorphic Registration using Sinkhorn Divergences (2206.13948v2)
Abstract: The diffeomorphic registration framework enables to define an optimal matching function between two probability measures with respect to a data-fidelity loss function. The non convexity of the optimization problem renders the choice of this loss function crucial to avoid poor local minima. Recent work showed experimentally the efficiency of entropy-regularized optimal transportation costs, as they are computationally fast and differentiable while having few minima. Following this approach, we provide in this paper a new framework based on Sinkhorn divergences, unbiased entropic optimal transportation costs, and prove the statistical consistency with rate of the empirical optimal deformations.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.