Papers
Topics
Authors
Recent
2000 character limit reached

Fewest-Switches Surface Hopping with Long Short-Term Memory Networks (2206.13780v2)

Published 28 Jun 2022 in physics.chem-ph

Abstract: The mixed quantum-classical dynamical simulation is essential to study nonadiabatic phenomena in photophysics and photochemistry. In recent years, many machine learning models have been developed to accelerate the time evolution of the nuclear subsystem. Herein, we implement long short-term memory (LSTM) networks as a propagator to accelerate the time evolution of the electronic subsystem during the fewest-switches surface hopping (FSSH) simulations. A small number of reference trajectories are generated using the original FSSH method, and then the LSTM networks can be built, accompanied by careful examination of typical LSTM-FSSH trajectories that employ the same initial condition and random numbers as the corresponding reference. The constructed network is applied to FSSH to further produce a trajectory ensemble to reveal the mechanism of nonadiabatic processes. Taking Tully's three models as test systems, the collective results can be reproduced qualitatively. This work demonstrates that LSTM is applicable to the most popular surface hopping simulations.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.