Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 126 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Non-Independent Components Analysis (2206.13668v4)

Published 28 Jun 2022 in math.ST, stat.ME, and stat.TH

Abstract: A seminal result in the ICA literature states that for $AY = \varepsilon$, if the components of $\varepsilon$ are independent and at most one is Gaussian, then $A$ is identified up to sign and permutation of its rows (Comon, 1994). In this paper we study to which extent the independence assumption can be relaxed by replacing it with restrictions on higher order moment or cumulant tensors of $\varepsilon$. We document new conditions that establish identification for several non-independent component models, e.g. common variance models, and propose efficient estimation methods based on the identification results. We show that in situations where independence cannot be assumed the efficiency gains can be significant relative to methods that rely on independence.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube