Papers
Topics
Authors
Recent
Search
2000 character limit reached

Efficient Private SCO for Heavy-Tailed Data via Averaged Clipping

Published 27 Jun 2022 in cs.LG and math.OC | (2206.13011v4)

Abstract: We consider stochastic convex optimization for heavy-tailed data with the guarantee of being differentially private (DP). Most prior works on differentially private stochastic convex optimization for heavy-tailed data are either restricted to gradient descent (GD) or performed multi-times clipping on stochastic gradient descent (SGD), which is inefficient for large-scale problems. In this paper, we consider a one-time clipping strategy and provide principled analyses of its bias and private mean estimation. We establish new convergence results and improved complexity bounds for the proposed algorithm called AClipped-dpSGD for constrained and unconstrained convex problems. We also extend our convergent analysis to the strongly convex case and non-smooth case (which works for generalized smooth objectives with H$\ddot{\text{o}}$lder-continuous gradients). All the above results are guaranteed with a high probability for heavy-tailed data. Numerical experiments are conducted to justify the theoretical improvement.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.