Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 148 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 40 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 443 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

SKTR: Trace Recovery from Stochastically Known Logs (2206.12672v3)

Published 25 Jun 2022 in cs.LG and cs.AI

Abstract: Developments in machine learning together with the increasing usage of sensor data challenge the reliance on deterministic logs, requiring new process mining solutions for uncertain, and in particular stochastically known, logs. In this work we formulate {trace recovery}, the task of generating a deterministic log from stochastically known logs that is as faithful to reality as possible. An effective trace recovery algorithm would be a powerful aid for maintaining credible process mining tools for uncertain settings. We propose an algorithmic framework for this task that recovers the best alignment between a stochastically known log and a process model, with three innovative features. Our algorithm, SKTR, 1) handles both Markovian and non-Markovian processes; 2) offers a quality-based balance between a process model and a log, depending on the available process information, sensor quality, and machine learning predictiveness power; and 3) offers a novel use of a synchronous product multigraph to create the log. An empirical analysis using five publicly available datasets, three of which use predictive models over standard video capturing benchmarks, shows an average relative accuracy improvement of more than 10 over a common baseline.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.