Papers
Topics
Authors
Recent
Search
2000 character limit reached

Augmented unprojected Krylov subspace methods

Published 24 Jun 2022 in math.NA and cs.NA | (2206.12315v3)

Abstract: Augmented Krylov subspace methods aid in accelerating the convergence of a standard Krylov subspace method by including additional vectors in the search space. A residual projection framework based on residual (Petrov-) Galerkin constraints was presented in [Gaul et al. SIAM J. Matrix Anal. Appl 2013], and later generalised in a recent survey on subspace recycling iterative methods [Soodhalter et al. GAMM-Mitt. 2020]. The framework describes augmented Krylov subspace methods in terms of applying a standard Krylov subspace method to an appropriately projected problem. In this work we show that the projected problem has an equivalent unprojected formulation, and that viewing the framework in this way provides a similar description for the class of unprojected augmented Krylov subspace methods. We derive the first unprojected augmented Full Orthogonalization Method (FOM), and demonstrate its effectiveness as a recycling method. We then show how the R${3}$GMRES algorithm fits within the framework. We show that unprojected augmented short recurrence methods fit within the framework, but can only be implemented in practice under certain conditions on the augmentation subspace. We demonstrate this using the Augmented Conjugate Gradient (AugCG) algorithm as an example.

Citations (2)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.