Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 70 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 175 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Distinguished self-adjoint extension and eigenvalues of operators with gaps. Application to Dirac-Coulomb operators (2206.11679v4)

Published 23 Jun 2022 in math.SP, math-ph, math.AP, and math.MP

Abstract: We consider a linear symmetric operator in a Hilbert space that is neither bounded from above nor from below, admits a block decomposition corresponding to an orthogonal splitting of the Hilbert space and has a variational gap property associated with the block decomposition. A typical example is the Dirac-Coulomb operator defined on $C\infty_c(\mathbb R3\setminus{0}, \mathbb C4)$. In this paper we define a distinguished self-adjoint extension with a spectral gap and characterize its eigenvalues in that gap by a min-max principle. This has been done in the past under technical conditions. Here we use a different, geometric strategy, to achieve that goal by making only minimal assumptions. Our result applied to the Dirac-Coulomb-like Hamitonians covers sign-changing potentials as well as molecules with an arbitrary number of nuclei having atomic numbers less than or equal to 137.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube