Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 152 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 119 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Forecasting the cost of drought events in France by Super Learning (2206.11545v2)

Published 23 Jun 2022 in stat.AP, math.ST, and stat.TH

Abstract: Drought events are the second most expensive type of natural disaster within the French legal framework known as the natural disasters compensation scheme. In recent years, drought events have been remarkable in their geographical scale and intensity. We develop and apply a new methodology to forecast the cost of a drought event in France. The methodology hinges on Super Learning (van der Laan et al., 2007; Benkeser et al., 2018), a general aggregation strategy to learn a feature of the law of the data identified through an ad hoc risk function by relying on a library of algorithms. The algorithms either compete (discrete Super Learning) or collaborate (continuous Super Learning), with a cross-validation scheme determining the best performing algorithm or combination of algorithms, respectively. Our Super Learner takes into account the complex dependence structure induced in the data by the spatial and temporal nature of drought events.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.