Tight bounds for the learning of homotopy à la Niyogi, Smale, and Weinberger for subsets of Euclidean spaces and of Riemannian manifolds
Abstract: In this article we extend and strengthen the seminal work by Niyogi, Smale, and Weinberger on the learning of the homotopy type from a sample of an underlying space. In their work, Niyogi, Smale, and Weinberger studied samples of $C2$ manifolds with positive reach embedded in $\mathbb{R}d$. We extend their results in the following ways: In the first part of our paper we consider both manifolds of positive reach -- a more general setting than $C2$ manifolds -- and sets of positive reach embedded in $\mathbb{R}d$. The sample $P$ of such a set $\mathcal{S}$ does not have to lie directly on it. Instead, we assume that the two one-sided Hausdorff distances -- $\varepsilon$ and $\delta$ -- between $P$ and $\mathcal{S}$ are bounded. We provide explicit bounds in terms of $\varepsilon$ and $ \delta$, that guarantee that there exists a parameter $r$ such that the union of balls of radius $r$ centred at the sample $P$ deformation-retracts to $\mathcal{S}$. In the second part of our paper we study homotopy learning in a significantly more general setting -- we investigate sets of positive reach and submanifolds of positive reach embedded in a \emph{Riemannian manifold with bounded sectional curvature}. To this end we introduce a new version of the reach in the Riemannian setting inspired by the cut locus. Yet again, we provide tight bounds on $\varepsilon$ and $\delta$ for both cases (submanifolds as well as sets of positive reach), exhibiting the tightness by an explicit construction.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.