Papers
Topics
Authors
Recent
2000 character limit reached

How to Assess Trustworthy AI in Practice (2206.09887v2)

Published 20 Jun 2022 in cs.CY

Abstract: This report is a methodological reflection on Z-Inspection${\small{\circledR}}$. Z-Inspection${\small{\circledR}}$ is a holistic process used to evaluate the trustworthiness of AI-based technologies at different stages of the AI lifecycle. It focuses, in particular, on the identification and discussion of ethical issues and tensions through the elaboration of socio-technical scenarios. It uses the general European Union's High-Level Expert Group's (EU HLEG) guidelines for trustworthy AI. This report illustrates for both AI researchers and AI practitioners how the EU HLEG guidelines for trustworthy AI can be applied in practice. We share the lessons learned from conducting a series of independent assessments to evaluate the trustworthiness of AI systems in healthcare. We also share key recommendations and practical suggestions on how to ensure a rigorous trustworthy AI assessment throughout the life-cycle of an AI system.

Citations (11)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.