Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 152 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 119 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Classical Splitting of Parametrized Quantum Circuits (2206.09641v1)

Published 20 Jun 2022 in quant-ph

Abstract: Barren plateaus appear to be a major obstacle to using variational quantum algorithms to simulate large-scale quantum systems or replace traditional machine learning algorithms. They can be caused by multiple factors such as expressivity, entanglement, locality of observables, or even hardware noise. We propose classical splitting of ans\"atze or parametrized quantum circuits to avoid barren plateaus. Classical splitting is realized by splitting an $N$ qubit ansatz to multiple ans\"atze that consists of $\mathcal{O}(\log N)$ qubits. We show that such an ansatz can be used to avoid barren plateaus. We support our results with numerical experiments and perform binary classification on classical and quantum datasets. Then, we propose an extension of the ansatz that is compatible with variational quantum simulations. Finally, we discuss a speed-up for gradient-based optimization and hardware implementation, robustness against noise and parallelization, making classical splitting an ideal tool for noisy intermediate scale quantum (NISQ) applications.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.