Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 74 tok/s
Gemini 2.5 Pro 37 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4.5 32 tok/s Pro
2000 character limit reached

Norm Inequalities for Integral Operators on Cones (2206.08987v1)

Published 17 Jun 2022 in math.CA

Abstract: In this dissertation we explore the $[L{\mathrm{p}},\ L{q}]$-boundedness of certain integral operators on weighted spaces on cones in ${\mathbb R}{n}.$ These integral operators are of the type $\displaystyle \int_{V}k(x,\ y)f(y)dy$ defined on a homogeneous cone $V$. The results of this dissertation are then applied to an important class of operators such as Riemann-Liouville's fractional integral operators, Weyl's fractional integral operators and Laplace's operators. As special cases of the above, we obtain an ${\mathbb R}{n}$ -generalization of the celebrated Hardy's inequality on domains of positivity. We also prove dual results.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube