Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 161 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 127 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 26 tok/s Pro
2000 character limit reached

Towards computing complete parameter ranges in parametric modeling (2206.08698v1)

Published 17 Jun 2022 in cs.GR

Abstract: In parametric design, the geometric model is edited by changing relevant parameters in the parametric model, which is commonly done sequentially on multiple parameters. Without guidance on allowable parameter ranges that can guarantee the solvability of the geometric constraint system, the user could assign improper parameter values to the model's parameters, which would further lead to a failure in model updating. However, current commercial CAD systems provide little support for the proper parameter assignments. Although the existing methods can compute allowable ranges for individual parameters, they face difficulties in handling multi-parameter situations. In particular, these methods could miss some feasible parameter values and provide incomplete allowable parameter ranges. To solve this problem, an automatic approach is proposed in this paper to compute complete parameter ranges in multi-parameter editing. In the approach, a set of variable parameters are first selected to be sequentially edited by the user; before each editing operation, the one-dimensional ranges of the variable parameters are presented as guidance. To compute the one-dimensional ranges, each variable parameter is expressed as an equality-constrained function, and its one-dimensional allowable range is obtained by calculating the function range. To effectively obtain the function range which can hardly be calculated in a normal way, the function range problem is converted into a constrained optimization problem, and is then solved by Lagrange multiplier method and the Niching particle swarm optimization algorithm (the NichePSO). The effectiveness and efficiency of the proposed approach is verified by several experimental results.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.