Papers
Topics
Authors
Recent
2000 character limit reached

Uncertainty Quantification and the Marginal MDP Model

Published 16 Jun 2022 in stat.CO | (2206.08418v1)

Abstract: The paper presents a new perspective on the mixture of Dirichlet process model which allows the recovery of full and correct uncertainty quantification associated with the full model, even after having integrated out the random distribution function. The implication is that we can run a simple Markov chain Monte Carlo algorithm and subsequently return the original uncertainty which was removed from the integration. This also has the benefit of avoiding more complicated algorithms which do not perform the integration step. Numerous illustrations are presented.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.