Papers
Topics
Authors
Recent
2000 character limit reached

Nonlinear input feature reduction for data-based physical modeling (2206.07400v1)

Published 15 Jun 2022 in physics.comp-ph and physics.data-an

Abstract: This work introduces a novel methodology to derive physical scalings for input features from data. The approach developed in this article relies on the maximization of mutual information to derive optimal nonlinear combinations of input features. These combinations are both adapted to physics-related models and interpretable (in a symbolic way). The algorithm is presented in detail, then tested on a synthetic toy model. The results show that our approach can effectively construct relevant combinations by analyzing a strongly noisy nonlinear dataset. These results are promising and may significantly help training data-driven models. Finally, the last part of the paper introduces a way to perform automatic dimensional analysis from data. The test case is a synthetic dataset inspired by the Law of the Wall from turbulent boundary layer theory. Once again, the algorithm shows that it can recover relevant nondimensional variables from data.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.