Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 111 tok/s Pro
Kimi K2 161 tok/s Pro
GPT OSS 120B 412 tok/s Pro
Claude Sonnet 4 35 tok/s Pro
2000 character limit reached

Spectral properties of Schrödinger operators with locally $H^{-1}$ potentials (2206.07079v1)

Published 14 Jun 2022 in math.SP, math-ph, and math.MP

Abstract: We study half-line Schr\"odinger operators with locally $H{-1}$ potentials. In the first part, we focus on a general spectral theoretic framework for such operators, including a Last--Simon-type description of the absolutely continuous spectrum and sufficient conditions for different spectral types. In the second part, we focus on potentials which are decaying in a local $H{-1}$ sense; we establish a spectral transition between short-range and long-range potentials and an $\ell2$ spectral transition for sparse singular potentials. The regularization procedure used to handle distributional potentials is also well suited for controlling rapid oscillations in the potential; thus, even within the class of smooth potentials, our results apply in situations which would not classically be considered decaying or even bounded.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.