Papers
Topics
Authors
Recent
2000 character limit reached

AmbiSep: Ambisonic-to-Ambisonic Reverberant Speech Separation Using Transformer Networks (2206.06184v1)

Published 13 Jun 2022 in eess.AS and eess.SP

Abstract: Consider a multichannel Ambisonic recording containing a mixture of several reverberant speech signals. Retreiving the reverberant Ambisonic signals corresponding to the individual speech sources blindly from the mixture is a challenging task as it requires to estimate multiple signal channels for each source. In this work, we propose AmbiSep, a deep neural network-based plane-wave domain masking approach to solve this task. The masking network uses learned feature representations and transformers in a triple-path processing configuration. We train and evaluate the proposed network architecture on a spatialized WSJ0-2mix dataset, and show that the method achieves a multichannel scale-invariant signal-to-distortion ratio improvement of 17.7 dB on the blind test set, while preserving the spatial characteristics of the separated sounds.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.