Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 88 tok/s
Gemini 2.5 Pro 59 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 110 tok/s Pro
Kimi K2 210 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

MammoFL: Mammographic Breast Density Estimation using Federated Learning (2206.05575v5)

Published 11 Jun 2022 in eess.IV, cs.CV, cs.DC, and cs.LG

Abstract: In this study, we automate quantitative mammographic breast density estimation with neural networks and show that this tool is a strong use case for federated learning on multi-institutional datasets. Our dataset included bilateral CC-view and MLO-view mammographic images from two separate institutions. Two U-Nets were separately trained on algorithm-generated labels to perform segmentation of the breast and dense tissue from these images and subsequently calculate breast percent density (PD). The networks were trained with federated learning and compared to three non-federated baselines, one trained on each single-institution dataset and one trained on the aggregated multi-institution dataset. We demonstrate that training on multi-institution datasets is critical to algorithm generalizability. We further show that federated learning on multi-institutional datasets improves model generalization to unseen data at nearly the same level as centralized training on multi-institutional datasets, indicating that federated learning can be applied to our method to improve algorithm generalizability while maintaining patient privacy.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube