Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 188 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 57 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 431 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Detecting negative eigenvalues of exact and approximate Hessian matrices in optimization (2206.05318v3)

Published 10 Jun 2022 in math.OC

Abstract: Nonconvex minimization algorithms often benefit from the use of second-order information as represented by the Hessian matrix. When the Hessian at a critical point possesses negative eigenvalues, the corresponding eigenvectors can be used to search for further improvement in the objective function value. Computing such eigenpairs can be computationally challenging, particularly if the Hessian matrix itself cannot be built directly but must rather be sampled or approximated. In blackbox optimization, such derivative approximations are built at a significant cost in terms of function values. In this paper, we investigate practical approaches to detect negative eigenvalues in Hessian matrices without access to the full matrix. We propose a general framework that begins with the diagonal and gradually builds submatrices to detect negative curvature. Crucially,our approach works both when exact Hessian coordinate values are available and when Hessian coordinate values are approximated. We compare several instances of our framework on a test set of Hessian matrices from a popular optimization library, and finite-differences approximations thereof. Our experiments highlight the importance of the variable order in the problem description, and show that forming submatrices is often an efficient approach to detect negative curvature.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.