Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 79 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 199 tok/s Pro
GPT OSS 120B 444 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Nonlinear Diffusion on Networks: Perturbations and Consensus Dynamics (2206.04442v4)

Published 9 Jun 2022 in math.DS

Abstract: In this paper, we study a class of equations representing nonlinear diffusion on networks. A particular instance of our model can be seen as a network equivalent of the porous-medium equation. We are interested in studying perturbations of such a system and describing the consensus dynamics. The nonlinearity of the equations gives rise to potentially intricate structures of equilibria that can intersect the consensus space, creating singularities. For the unperturbed case, we characterise the sets of equilibria by exploiting the symmetries under group transformations of the nonlinear vector field. Under small perturbations, we obtain a slow-fast system. Thus, we analyse the slow-fast dynamics near the singularities on the consensus space. The analysis at this stage is carried out for complete networks, allowing a detailed characterisation of the system. We provide a linear approximation of the intersecting branches of equilibria at the singular points; as a consequence, we show that, generically, the singularities on the consensus space turn out to be transcritical. We prove under local assumptions the existence of canard solutions. For generic graph structures, assuming more strict conditions on the perturbation, we prove the existence of a maximal canard, which coincides with the consensus subspace. In addition, we validate by numerical simulations the principal findings of our main theory, extending the study to non-complete graphs. Moreover, we show how the delayed loss of stability associated to the canards induces transient spatio-temporal patterns.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube