Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 186 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Searching Similarity Measure for Binarized Neural Networks (2206.03325v1)

Published 5 Jun 2022 in cs.LG

Abstract: Being a promising model to be deployed in resource-limited devices, Binarized Neural Networks (BNNs) have drawn extensive attention from both academic and industry. However, comparing to the full-precision deep neural networks (DNNs), BNNs suffer from non-trivial accuracy degradation, limiting its applicability in various domains. This is partially because existing network components, such as the similarity measure, are specially designed for DNNs, and might be sub-optimal for BNNs. In this work, we focus on the key component of BNNs -- the similarity measure, which quantifies the distance between input feature maps and filters, and propose an automatic searching method, based on genetic algorithm, for BNN-tailored similarity measure. Evaluation results on Cifar10 and Cifar100 using ResNet, NIN and VGG show that most of the identified similarty measure can achieve considerable accuracy improvement (up to 3.39%) over the commonly-used cross-correlation approach.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.