Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 87 tok/s Pro
Kimi K2 190 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Spatiotemporal Pricing and Fleet Management of Autonomous Mobility-on-Demand Networks: A Decomposition and Dynamic Programming Approach with Bounded Optimality Gap (2206.03298v2)

Published 7 Jun 2022 in math.OC

Abstract: This paper studies spatiotemporal pricing and fleet management for autonomous mobility-on-demand (AMoD) systems while taking elastic demand into account. We consider a platform that offers ride-hailing services using a fleet of autonomous vehicles and makes pricing, rebalancing, and fleet sizing decisions in response to demand fluctuations. A network flow model is developed to characterize the evolution of system states over space and time, which captures the vehicle-passenger matching process and demand elasticity with respect to price and waiting time. The platform's objective of maximizing profit is formulated as a constrained optimal control problem, which is highly nonconvex due to the nonlinear demand model and complex supply-demand interdependence. To address this challenge, an integrated decomposition and dynamic programming approach is proposed, where we first relax the problem through a change of variable, then separate the relaxed problem into a few small-scale subproblems via dual decomposition, and finally solve each subproblem using dynamic programming. Despite the nonconvexity, our approach establishes a theoretical upper bound to evaluate the solution optimality. The proposed model and methodology are validated in numerical studies for Manhattan. We find that compared to the benchmark case, the proposed upper bound is significantly tighter. We also find that compared to pricing alone, joint pricing and fleet rebalancing can only offer a minor profit improvement when demand can be accurately predicted. However, during unanticipated demand surges, joint pricing and rebalancing can lead to substantially improved profits, and the impacts of demand shocks, despite being more widespread, can dissipate faster.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube