Papers
Topics
Authors
Recent
Search
2000 character limit reached

Class Prior Estimation under Covariate Shift: No Problem?

Published 6 Jun 2022 in stat.ML, cs.LG, math.ST, and stat.TH | (2206.02449v2)

Abstract: We show that in the context of classification the property of source and target distributions to be related by covariate shift may be lost if the information content captured in the covariates is reduced, for instance by dropping components or mapping into a lower-dimensional or finite space. As a consequence, under covariate shift simple approaches to class prior estimation in the style of classify and count with or without adjustment are infeasible. We prove that transformations of the covariates that preserve the covariate shift property are necessarily sufficient in the statistical sense for the full set of covariates. A probing algorithm as alternative approach to class prior estimation under covariate shift is proposed.

Citations (5)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.